Advertisements
Advertisements
प्रश्न
Find the sum of the following series
1 + 3 + 5 + ... + 71
उत्तर
1 + 3 + 5 + ... + 71
= n2
n = `("l" - "a")/"d" + 1`
⇒ `((71 - 1)/2) + 1`
= `70/2 + 1`
= 36
∴ 1 + 3 + 5 + ... + 71 = (36)2
= 1296
APPEARS IN
संबंधित प्रश्न
Find the sum of the following series
1 + 2 + 3 + ... + 60
Find the sum of the following series
3 + 6 + 9 + ... + 96
Find the sum of the following series
51 + 52 + 53 + ... + 92
Find the sum of the following series
1 + 4 + 9 + 16 + ... + 225
Find the sum of the following series
62 + 72 + 82 + ... + 212
If 1 + 2 + 3 + ... + k = 325, then find 13 + 23 + 33 + ... + k3
If 13 + 23 + 33 + ... + k3 = 44100 then find 1 + 2 + 3 + ... + k
The sum of the cubes of the first n natural numbers is 2025, then find the value of n
Find the sum of the series (23 – 13) + (43 – 33) + (63 – 153) + ... to n terms
The value of (13 + 23 + 33 + ... + 153) – (1 + 2 + 3 + ... + 15) is