Advertisements
Advertisements
प्रश्न
Given A = {x : –1 < x ≤ 5, x ∈ R} and B = {x : – 4 ≤ x < 3, x ∈ R}
Represent on different number lines:
A ∩ B
उत्तर
A ∩ B = {x : –1 < x ≤ 3, x ∈ R}
It can be represented on a number line as
APPEARS IN
संबंधित प्रश्न
Represent the following inequalities on real number line:
2x – 1 < 5
Represent the solution of the following inequalities on the real number line:
`(2x + 5)/3 > 3x - 3`
The diagram represents two inequations A and B on real number lines:
- Write down A and B in set builder notation.
- Represent A ∪ B and A ∩ B' on two different number lines.
Given:
A = {x : 11x – 5 > 7x + 3, x ∈ R} and
B = {x : 18x – 9 ≥ 15 + 12x, x ∈ R}.
Find the range of set A ∩ B and represent it on the number line.
Solve the following in equation write the solution set and represent it on the number line:
`-x/3 <= x/2 -1 1/3 < 1/6, x ∈ R`
Solve the following inequation and represent the solution set on a number line.
`-8 1/2 < -1/2 - 4x ≤ 7 1/2, x ∈ I`
Graph the solution set for each inequality:
-3≤ x ≤3.
Solve : `(4x - 10)/(3) ≤ (5x - 7)/(2)` x ∈ R and represent the solution set on the number line.
Solve the inequation : `-2(1)/(2) + 2x ≤ (4x)/(3) ≤ (4)/(3) + 2x, x ∈ "W"`. Graph the solution set on the number line.
Solve the following inequation, write down the solution set and represent it on the real number line.
`-3 + x ≤ (7x)/2 + 2 < 8 + 2x, x ∈ I`