Advertisements
Advertisements
प्रश्न
How much is y4 – 12y2 + y + 14 greater than 17y3 + 34y2 – 51y + 68?
उत्तर
Required expression is y4 – 12y2 + y + 14 – (17y3 + 34y2 – 51y + 68) = y4 – 12y2 + y + 14 – 17y3 – 34y2 + 51y – 68
On combining the like terms,
= y4 – 12y2 – 34y2 + y + 51y + 14 – 68 – 17y3
= y4 – 46y2 + 52y – 17y3 – 54
= y4 – 17y3 – 46y2 + 52y – 54
So, y4 – 12y2 + y + 14 is y4 – 17y3 – 46y2 + 52y – 54 greater than 17y3 + 34y2 – 51y + 68.
APPEARS IN
संबंधित प्रश्न
Simplify combining like terms: 21b − 32 + 7b − 20b
Simplify combining like terms: (3y2 + 5y - 4) - (8y - y2 - 4)
Add: 4x2y, - 3xy2, - 5xy2, 5x2y
What should be subtracted from 2a + 8b + 10 to get - 3a + 7b + 16?
Add the following algebraic expression:
\[\frac{2}{3}a, \frac{3}{5}a, - \frac{6}{5}a\]
Subtract:
\[\frac{ab}{7} - \frac{35}{3}bc + \frac{6}{5}ac \text { from } \frac{3}{5}bc - \frac{4}{5}ac\]
Add:
17a2b2 + 16c; 28c − 28a2b2
Find the sum of the following expressions
a + 5b + 7c, 2a + 10b + 9c
Simplify: n + (m + 1) + (n + 2) + (m + 3) + (n + 4) + (m + 5)
Add:
2p4 – 3p3 + p2 – 5p + 7, –3p4 – 7p3 – 3p2 – p – 12