मराठी

If 12 is a root of the equation x2+kx-54=0, then the value of k is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `(1)/(2)` is a root of the equation `x^2 + kx - (5)/(4) = 0`, then the value of k is ______.

पर्याय

  • 2

  • – 2

  • `(1)/(4)`

  • `(1)/(2)`

MCQ
रिकाम्या जागा भरा

उत्तर

If `(1)/(2)` a root of the equation `x^2 + kx - 5/4 = 0`, then the value of k is 2.

Explanation:

`(1)/(2)` is a root of the equation

x2 + kx – `(5)/(4)` = 0

Substituting the value of x = `(1)/(2)` in the equation

`(1/2)^2 + k xx (1)/(2) - (5)/(4)` = 0

⇒ `(1)/(4) + k/(2) - (5)/(4)` = 0

⇒ `k/(2) - 1` = 0

⇒ k = 1 × 2 = 2

∴ k = 2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Quadatric Euation - Exercise 4.1 [पृष्ठ ३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 4 Quadatric Euation
Exercise 4.1 | Q 4 | पृष्ठ ३७
एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
पाठ 5 Quadratic Equations in One Variable
Multiple Choice Question | Q 4

संबंधित प्रश्‍न

For what value of m, are the roots of the equation (3m + 1)x2 + (11 + m) x + 9 = 0 equal?


Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:

`3x^2 - 4sqrt3x + 4 = 0`


Find the values of k for which the roots are real and equal in each of the following equation:

(2k + 1)x2 + 2(k + 3)x + (k + 5) = 0


Find the values of k for which the roots are real and equal in each of the following equation:

k2x2 - 2(2k - 1)x + 4 = 0


If a, b, c are real numbers such that ac ≠ 0, then show that at least one of the equations ax2 + bx + c = 0 and -ax2 + bx + c = 0 has real roots.


Solve for x :

x2 + 5x − (a2 + a − 6) = 0


If x = −2 is a root of the equation 3x2 + 7x + p = 1, find the values of p. Now find the value of k so that the roots of the equation x2 + k(4x + k − 1) + p = 0 are equal.


Determine the nature of the roots of the following quadratic equation : 

2x2 + x-1=0 


Solve the following quadratic equation using formula method only 

x2 - 4x - 1 = 0


Solve the following quadratic equation using formula method only 

15x2 - 28 = x


Without actually determining the roots comment upon the nature of the roots of each of the following equations:
`2sqrt(3)x^2 - 2sqrt(2)x - sqrt(3) = 0`


Find the value of k so that sum of the roots of the quadratic equation is equal to the product of the roots:
kx2 + 6x - 3k = 0, k ≠ 0


Find the discriminant of the following equations and hence find the nature of roots: 2x2– 3x + 5 = 0


Find the value (s) of k for which each of the following quadratic equation has equal roots : (k – 4) x2 + 2(k – 4) x + 4 = 0


Find the value(s) of m for which each of the following quadratic equation has real and equal roots: (3m + 1)x2 + 2(m + 1)x + m = 0


Find the values of k for which each of the following quadratic equation has equal roots: 9x2 + kx + 1 = 0 Also, find the roots for those values of k in each case.


The quadratic equation `2x^2 - sqrt(5)x + 1 = 0` has ______.


Find the value(s) of k for which each of the following quadratic equation has equal roots: (k + 4)x2 + (k + 1)x + 1 =0 Also, find the roots for that value (s) of k in each case.


Find the roots of the quadratic equation by using the quadratic formula in the following:

`x^2 + 2sqrt(2)x - 6 = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×