Advertisements
Advertisements
प्रश्न
If 3ax + 2b2 = 3bx + 2a2, then express x in terms of a and b. Also, express the result in the simplest form.
उत्तर
3ax + 2b2 = 3bx + 2a2
⇒ 3ax - 3bx = 2a2 - 2b2
⇒ x(3a - 3b) = 2a2 - 2b2
⇒ x = `(2"a"^2 - 2"b"^2)/(3"a" - 3"b")`
⇒ x = `(2("a"^2 - "b"^2))/(3("a"- "b")`
⇒ x = `(2("a" + "b")("a" - "b"))/(3("a" - "b")`
⇒ x = `(2("a" + "b"))/(3)` ....(∵ a ≠ b)
APPEARS IN
संबंधित प्रश्न
The simple interest on a sum of money is the product of the sum of money, the number of years and the rate percentage. Write the formula to find the simple interest on Rs A for T years at R% per annum.
Make a formula for the statement:"The reciprocal of focal length f is equal to the sum of reciprocals of the object distance u and the image distance v."
Make a formula for the statement:"The number of diagonals, d, that can be drawn from one vertex of an n sided polygon to all the other vertices is equal to the number of sides of the polygon less 3"
Make a the subject of formula S = `"ut" + (1)/(2)"at"^2`
Make A the subject of formula R = `("m"_1"B" + "m"_2"A")/("m"_1 + "m"_2)`
Make I the subject of the following M = `"L" /"F"(1/2"N" - "C") xx "I"`. Find I, If M = 44, L = 20, F = 15, N = 50 and C = 13.
Make f the subject of the formula D = `sqrt((("f" + "p")/("f" - "p"))`. Find f, when D = 13 and P = 21.
"The volume of a cylinder V is equal to the product of π and square of radius r and the height h". Express this statement as a formula. Make r the subject formula. Find r, when V = 44cm3, π = `(22)/(7)`, h = 14cm.
The total energy E possess by a body of Mass 'm', moving with a velocity 'v' at a height 'h' is given by: E = `(1)/(2) "m" "u"^2 + "mgh"`. Find m, if v = 2, g = 10, h = 5 and E = 104.
If s = `"n"/(2)[2"a" + ("n" - 1)"d"]`, the n express d in terms of s, a and n. find d if n = 3, a = n + 1 and s = 18.