Advertisements
Advertisements
प्रश्न
Make I the subject of the following M = `"L" /"F"(1/2"N" - "C") xx "I"`. Find I, If M = 44, L = 20, F = 15, N = 50 and C = 13.
उत्तर
M = `"L" /"F"(1/2"N" - "C") xx "I"`
⇒ M - L = `(1)/"F"(1/2"N" - "C") xx "I"`
⇒ F(M - L) = `(1/2"N" - "C") xx "I"`
⇒ F(M - L) = `(("N" - 2"C")/2) xx "I"`
⇒ `(2"F"("M" - "L"))/(("N" - 2"C")) = "I"`
Substituting the values of M = 44, L = 0, F = 15, N = 50 and C = 30, we get
I = `(2"F"("M" - "L"))/(("N" - 2"C")`
= `(2 xx 15(44 - 20))/(50 - 2 xx 13)`
= `(30 xx 24)/(24)`
= 30.
APPEARS IN
संबंधित प्रश्न
The volume V, of a cone is equal to one third of π times the cube of the radius. Find a formula for it.
Make a formula for the statement:"The number of diagonals, d, that can be drawn from one vertex of an n sided polygon to all the other vertices is equal to the number of sides of the polygon less 3"
Apple cost x rupees per dozen and mangoes cost y rupees per score. Write a formula to find the total cost C in rupees of 20 apples and 30 mangoes.
Make x the subject of formula `"a"x^2/"a"^2 + y^2/"b"^2` = 1
Make a the subject of formula x = `sqrt(("a" + "b")/("a" - "b")`
Make d the subject of formula S = `"n"/(2){2"a" + ("n" - 1)"d"}`
If 3ax + 2b2 = 3bx + 2a2, then express x in terms of a and b. Also, express the result in the simplest form.
"The volume of a cone V is equal to the product of one third of π and square of radius r of the base and the height h". Express this statement as a formula. Make r the subject formula. Find r, when V = 1232cm3, π = `(22)/(7)`, h = 24cm.
The total energy E possess by a body of Mass 'm', moving with a velocity 'v' at a height 'h' is given by: E = `(1)/(2) "m" "u"^2 + "mgh"`. Make 'm' the subject of formula.
If s = `"n"/(2)[2"a" + ("n" - 1)"d"]`, the n express d in terms of s, a and n. find d if n = 3, a = n + 1 and s = 18.