मराठी

If a→=3i^-2j^+k^ and b→=2i^-4j^-3k^ then the value of |a→-2b→| will be ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `veca = 3hati - 2hatj + hatk` and `vecb = 2hati - 4hatj - 3hatk` then the value of `|veca - 2vecb|` will be ______.

पर्याय

  • `sqrt(85)`

  • `sqrt(86)`

  • `sqrt(87)`

  • `sqrt(88)`

MCQ
रिकाम्या जागा भरा

उत्तर

If `veca = 3hati - 2hatj + hatk` and `vecb = 2hati - 4hatj - 3hatk` then the value of `|veca - 2vecb|` will be `underlinebb(sqrt(86))`.

Explanation:

Given, `veca = 3hati - 2hatj + hatk`

`vecb = 2hati - 4hatj - 3hatk`

Then, `(veca - 2vecb) = [(3hati - 2hatj + hatk) - 2(2hati - 4hatj - 3hatk)]`

= `[3hati - 2hati + hatk - 4hati + 8hati + 6hati]`

= `(-hati + 6hatj + 7hatk)`

`|veca - 2vecb| = sqrt((-1)^2 + (6)^2 + (7)^2)`

= `sqrt(1 + 36 + 49)`

= `sqrt(86)` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Official

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the number of vectors of unit length perpendicular to both the vectors `veca=2hati+hatj+2hatk and vecb=hatj+hatk`


If `veca=4hati-hatj+hatk` then find a unit vector parallel to the vector `veca+vecb`


For given vectors,  `veca = 2hati - hatj + 2hatk` and `vecb = -hati  + hatj - hatk`, find the unit vector in the direction of the vector `veca +vecb`.


Find a vector in the direction of vector `5hati - hatj +2hatk` which has a magnitude of 8 units.


Show that the direction cosines of a vector equally inclined to the axes OX, OY, and OZ are `pm1/sqrt3, 1/sqrt3, 1/sqrt3`.


How do you deduce that two vectors are perpendicular?


The position vector particle has a length of 1m and makes 30° with the x-axis. What are the lengths of the x and y components of the position vector?


Compare the components for the following vector equations

(a) `"T"hatj - "mg"hatj = "ma"hatj`
(b) `vecT + vecF = vecA + vecB`
(c) `vecT - vecF = vecA - vecB`
(d) `"T"hatj + "mg"hatj = "ma"hatj`


If the horizontal and vertical components of a force are negative, then that force is acting in between


Find the vector component of the vector with initial point (2, 1) and terminal point (–5, 7).


Unit vector perpendicular to the plane of the triangle ABC with position vectors `veca, vecb, vecc` of the vertices A, B, C is ______.


Two vectors `veca = a_1 hati + a_2 hatj + a_3 hatk` and `vecb = b_1 hati + b_2 hatj + b_3 hatk` are collinear if ______.


 Check whether the vectors `2hati +2hatj +3hatk,-3hati +3hatj +2hatk and 3hati + 4hatk` From a triangle or not.


Check whether the vectors `2hati + 2hatj +3hatk, -3hati +3hatj +2hatk` and `3hati +4hatk` form a triangle or not.


Check whether the vectors `2hati + 2hatj+ 3hatk`, `-3hati + 3hatj +2hatk` and `3hati + 4hatk` form a triangle or not.


Check whether the vectors `2hati + 2hatj + 3hatk , -3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×