मराठी

Show that the direction cosines of a vector equally inclined to the axes OX, OY, and OZ are ±13,13,13. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the direction cosines of a vector equally inclined to the axes OX, OY, and OZ are `pm1/sqrt3, 1/sqrt3, 1/sqrt3`.

बेरीज

उत्तर

The direction ratio are < 1, 1, 1>

∴ Direction cosines are

`<1/sqrt (1 + 1 + 1), 1/sqrt(1 + 1 + 1), 1/ sqrt(1 + 1 + 1)>`

i.e., `< 1/sqrt3, 1/sqrt3, 1/sqrt3>`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Vector Algebra - Exercise 10.5 [पृष्ठ ४५८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 10 Vector Algebra
Exercise 10.5 | Q 11 | पृष्ठ ४५८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the number of vectors of unit length perpendicular to both the vectors `veca=2hati+hatj+2hatk and vecb=hatj+hatk`


If `veca=4hati-hatj+hatk` then find a unit vector parallel to the vector `veca+vecb`


For given vectors,  `veca = 2hati - hatj + 2hatk` and `vecb = -hati  + hatj - hatk`, find the unit vector in the direction of the vector `veca +vecb`.


Find a vector in the direction of vector `5hati - hatj +2hatk` which has a magnitude of 8 units.


Identify the unit vector in the following.


How do you deduce that two vectors are perpendicular?


The position vector particle has a length of 1m and makes 30° with the x-axis. What are the lengths of the x and y components of the position vector?


Compare the components for the following vector equations

(a) `"T"hatj - "mg"hatj = "ma"hatj`
(b) `vecT + vecF = vecA + vecB`
(c) `vecT - vecF = vecA - vecB`
(d) `"T"hatj + "mg"hatj = "ma"hatj`


If `overlinea`, `overlineb` and `overlinec` are three non-coplanar vectors then `(overlinea + overlineb + overlinec).[(overlinea + overlineb) xx (overlinea + overlinec)]` = ______


If `overline(a),overline(b),overline(c)` are non-coplanar vectors and λ is a real number then `[lambda(overline(a)+overline(b))lambda^2overline(b)  lambda overline(c)]=[overline(a)  overline(b)+overline(c)  overline(b)]` for ______.


If the horizontal and vertical components of a force are negative, then that force is acting in between


Unit vector perpendicular to the plane of the triangle ABC with position vectors `veca, vecb, vecc` of the vertices A, B, C is ______.


If a line makes angles 120° and 60° with the positive directions of X and Z axes respectively then the angle made by the line with positive Y-axis is ______.


Two vectors `veca = a_1 hati + a_2 hatj + a_3 hatk` and `vecb = b_1 hati + b_2 hatj + b_3 hatk` are collinear if ______.


If `veca = 4hati + 6hatj` and `vecb = 3hatj + 4hatk`, then the vector form of the component of `veca` along `vecb` is ______.


If `4hati - 5hatj + hatk, 2hati + 3hatj + 3hatk` and `xhati + yhatj + zhatk` represent the sides AB, BC and AC respectively of a triangle ABC, then find x, y, z.


Check whether the vectors `2hati + 2hatj +3hatk, -3hati +3hatj +2hatk` and `3hati +4hatk` form a triangle or not.


Check whether the vectors `2hati + 2hatj+ 3hatk`, `-3hati + 3hatj +2hatk` and `3hati + 4hatk` form a triangle or not.


If `veca = 3hati - 2hatj + hatk` and `vecb = 2hati - 4hatj - 3hatk` then the value of `|veca - 2vecb|` will be ______.


Shown below is a cuboid. Find `vec(BA).vec(BC)`


Check whether the vectors `2hati + 2hatj + 3hatk , -3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×