मराठी

If a→ is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then λa→ is unit vector if ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `veca` is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then λ`veca` is unit vector if ______.

पर्याय

  • λ = 1

  • λ = -1

  • a = |λ|

  • `a = 1/|λ|`

MCQ
रिकाम्या जागा भरा

उत्तर

If `veca` is a nonzero vector of magnitude ‘a’ and λ a nonzero scalar, then λ`veca` is unit vector if `underline(a = 1/|λ|)`

Explanation:

Given : Resultant of `veca` = a

That is, `|veca| = a`

`λveca` is a unit vector

`|lambdaveca| = 1`

`|lambda||veca| = 1`

`|lambda|a = 1``

`a = 1/|lambda|`

Hence, option `a = 1/|lambda|` is correct.

shaalaa.com
Magnitude and Direction of a Vector
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Vector Algebra - Exercise 10.3 [पृष्ठ ४४८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 10 Vector Algebra
Exercise 10.3 | Q 18 | पृष्ठ ४४८

संबंधित प्रश्‍न

Find a vector `veca` of magnitude `5sqrt2` , making an angle of `π/4` with x-axis, `π/2` with y-axis and an acute angle θ with z-axis. 


Find `|veca| and |vecb|`, if `(veca + vecb).(veca -vecb) = 8 and |veca| = 8|vecb|.`


Find the magnitude of two vectors `veca and vecb`, having the same magnitude and such that the angle between them is 60° and their scalar product is `1/2`.


Find a vector of magnitude 5 units, and parallel to the resultant of the vectors `veca = 2i + 3hatj - hatk` and `vecb = hati - 2hatj + hatk`.


If `veca, vecb, vecc` are mutually perpendicular vectors of equal magnitudes, find the angle which `veca + vecb + vecc`make with `veca or vecb or vecc`


Represent the following graphically:
(i) a displacement of 40 km, 30° east of north
(ii) a displacement of 50 km south-east
(iii) a displacement of 70 km, 40° north of west.


Find the magnitude of the vector \[\vec{a} = 2 \hat{i} + 3 \hat{j} - 6 \hat{k} .\]


Find the unit vector in the direction of \[3 \hat{i} + 4 \hat{j} - 12 \hat{k} .\]


If the sum of two unit vectors is a unit vector prove that the magnitude of their difference is `sqrt(3)`.


If \[\vec{a} = \hat{i} + \hat{j} + \hat{k} , \vec{b} = 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \text { and } \vec{c} = \hat{i} - 2 \hat{j} + \hat{k} ,\] find a vector of magnitude 6 units which is parallel to the vector \[2 \vec{a} - \vec{b} + 3 \vec{c .}\]


Find a vector of magnitude of 5 units parallel to the resultant of the vectors \[\vec{a} = 2 \hat{i} + 3 \hat{j} - \hat{k} \text{ and } \vec{b} = \hat{i} - 2 \hat{j} +\widehat{k} .\]


Find a vector \[\vec{r}\] of magnitude \[3\sqrt{2}\] units which makes an angle of \[\frac{\pi}{4}\] and \[\frac{\pi}{4}\] with y and z-axes respectively. 


Write the length (magnitude) of a vector whose projections on the coordinate axes are 12, 3 and 4 units.


Find a vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - \hat{j} + 2 \hat{k} ,\] which has magnitude of 6 units.


Write two different vectors having same magnitude.


Write a vector in the direction of vector \[5 \hat{i} - \hat{j} + 2 \hat{k}\] which has magnitude of 8 unit.


Find a vector \[\overrightarrow{a}\] of magnitude \[5\sqrt{2}\], making an angle of \[\frac{\pi}{4}\] with x-axis, \[\frac{\pi}{2}\] with y-axis and an acute angle θ with z-axis. 


Find a vector in the direction of vector \[2 \hat{i} - 3 \hat{j} + 6 \hat{k}\] which has magnitude 21 units.


If in a ∆ABC, A = (0, 0), B = (3, 3 \[\sqrt{3}\]), C = (−3\[\sqrt{3}\], 3), then the vector of magnitude 2 \[\sqrt{2}\] units directed along AO, where O is the circumcentre of ∆ABC is 

 


Find all vectors of magnitude `10sqrt(3)` that are perpendicular to the plane of `hat"i" + 2hat"j" + hat"k"` and `-hat"i" + 3hat"j" + 4hat"k"`


Prove that in a ∆ABC,  `sin"A"/"a" = sin"B"/"b" = sin"C"/"c"`, where a, b, c represent the magnitudes of the sides opposite to vertices A, B, C, respectively.


A vector `vec"r"` is inclined at equal angles to the three axes. If the magnitude of `vec"r"` is `2sqrt(3)` units, find `vec"r"`.


Find a vector of magnitude 6, which is perpendicular to both the vectors `2hat"i" - hat"j" + 2hat"k"` and `4hat"i" - hat"j" + 3hat"k"`.


Let `vecalpha = hati + 2hatj - hatk, vecbeta = 2hati - hatj + 3hatk, vecγ = 2hati + hatj + 6hatk`. If `vecalpha` and `vecbeta` are both perpendicular to a vector `vecδ` and `vecδ. vecγ` = 10, then the magnitude of `vecδ` is


Two equal forces acting at a point with an angle of 60° between them, if the resultant is equal `30sqrt(3)N`, the magnitude of the force will be


Which of the following statements is false about forces/ couple?


Read the following passage and answer the questions given below:

Teams A, B, C went for playing a tug of war game. Teams A, B, C have attached a rope to a metal ring and is trying to pull the ring into their own area.

Team A pulls with force F1 = `6hati + 0hatj  kN`,

Team B pulls with force F2 = `-4hati + 4hatj  kN`,

Team C pulls with force F3 = `-3hati - 3hatj  kN`,

  1. What is the magnitude of the force of Team A ?
  2. Which team will win the game?
  3. Find the magnitude of the resultant force exerted by the teams.
    OR
    In what direction is the ring getting pulled?

Find a vector of magnitude 20 units parallel to the vector `2hati + 5hatj + 4hatk`.


Find a vector of magnitude 9 units and perpendicular to the vectors.

`veca = 4hati - hatj + hatk` and `vecb = -2hati + hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×