मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

If D and E are the midpoints of the sides AB and AC of a triangle ABC, prove that BEDCBCBE→+DC→=32BC→ - Mathematics

Advertisements
Advertisements

प्रश्न

If D and E are the midpoints of the sides AB and AC of a triangle ABC, prove that `vec"BE" + vec"DC" = 3/2vec"BC"`

बेरीज

उत्तर


Let O be the origin.

Let `vec"a", vec"b", vec"c"` the position vectors of the points A, B and C respectively

Then `vec"OA" = vec"a", vec"OB" = vec"b", vec"OC" = vec"c"`

Given D is the midpoint of AB

∴ `vec"OD" = (vec"OA" + vec"OB")/2`

`vec"OD" = (vec"a" + vec"b")/2`

Also given E is the midpoint of AC

∴ `vec"OE" = (vec"OA" + vec"OC")/2`

`vec"OE" = (vec"a" + vec"c")/2`

`vec"BE" = vec"OE" - vec"OB"`

= `(vec"a" + vec"c")/2 - vec"b"`

`vec"BE" = (vec"a" + vec"c" - 2vec"b")/2`

`vec"DC" = vec"OC" - vec"OD"`

= `vec"c" - (vec"a" + vec"b")/2`

`vec"DC" = (2vec"c" + vec"a" - vec"b")/2`

`vec"BE" + vec"DC" = (vec"a" + vec"c" - 2vec"b")/2 + (2vec"c" - vec"a" - vec"b")/2`

= `(vec"a" + vec"c" - 2vec"b" + 2vec"c" - vec"a" - vec"b")/2`

= `(3vec"c" - 3vec"b")/2`

= `3/2(vec"c" - vec"b")`

= `3/2(vec"OC" - vec"OB")`

`vec"BE" + vec"DC" = 3/2vec"BC"`

shaalaa.com
Position Vectors
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Vector Algebra - Exercise 8.1 [पृष्ठ ६०]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 8 Vector Algebra
Exercise 8.1 | Q 4 | पृष्ठ ६०

संबंधित प्रश्‍न

Let `vec"a"` and `vec"b"` be the position vectors of the points A and B. Prove that the position vectors of the points which trisects the line segment AB are `(vec"a" + 2vec"b")/3` and `(vec"b" + 2vec"a")/3`


Prove that the line segment joining the midpoints of two sides of a triangle is parallel to the third side whose length is half of the length of the third side


Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram


If `vec"a"` and `vec"b"` represent a side and a diagonal of a parallelogram, find the other sides and the other diagonal


If D is the midpoint of the aide BC of a triangle ABC, prove that `vec"AB" + vec"AC" = 2vec"AD"`


If G is the centroid of a triangle ABC, prove that `vec"GA" + vec"GB" + vec"GC" = vec0`


Let A, B, and C be the vertices of a triangle. Let D, E, and F be the midpoints of the sides BC, CA, and AB respectively. Show that `vec"AD" + vec"BE" + vec"CF" = vec0`


If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then Prove that `vec"AB" + vec"AD" + vec"CB" + vec"CD" = 4vec"EF"`


The position vectors of the vertices of a triangle are `hat"i" + 2hat"j" + 3hat"k", 3hat"i" - 4hat"j" + 5hat"k"` and `-2hat"i" + 3hat"j" - 7hat"k"`. Find the perimeter of the triangle


Show that the points A(1, 1, 1), B(1, 2, 3) and C(2, – 1, 1) are vertices of an isosceles triangle


Choose the correct alternative:
If `vec"r" = (9vec"a" + 7vec"b")/16`, then the point P whose position vector `vec"r"` divides the line joining the points with position vectors `vec"a"` and `vec"b"` in the ratio


Choose the correct alternative:
Two vertices of a triangle have position vectors `3hat"i" + 4hat"j" - 4hat"k"` and `2hat"i" + 3hat"j" + 4hat"k"`. If the position vector of the centroid is `hat"i" + 2hat"j" + 3hat"k"`, then the position vector of the third vertex is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×