मराठी

If the Roots Of` 5x^2-k+1=0` Are Real and Distinct Then (A)`-2sqrt5<K2<Sqrt5` (B)` K>2sqrt5 ` Only (C)` K<-2sqrt5` (D) Either `K>2sqrt5 Or K<-2sqrt5` - Mathematics

Advertisements
Advertisements

प्रश्न

If the roots of` 5x^2-k+1=0` are real and distinct then  

(a)`-2sqrt5<k2<sqrt5`                     (b)` k>2sqrt5 ` only  

(c)` k<-2sqrt5`                              (d) either `k>2sqrt5  or  k<-2sqrt5`

उत्तर

(d) either `k>2sqrt5  or  k<-2sqrt5` 

It is given that the roots of the equation `(5x^2-k+1=0)`  are real and distinct. 

∴ `(b^2-4ac)>0`

⇒`(-k)^2-4xx5xx1>0` 

⇒`k^-20>0` 

⇒`k^2>20`

⇒`k>sqrt20  or  k<-sqrt20` 

⇒`k>2sqrt5   or   k<-2sqrt5` 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Quadratic Equations - Exercises 6

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 10 Quadratic Equations
Exercises 6 | Q 24

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The length of a rectangular field exceeds its breadth by 8 m and the area of the field is `240 m^2` . The breadth of the field is

(a) 20 m (b) 30 m (c) 12 m (d) 16 m


If the quadratic equation `px^2-2sqrt5px+15=0`  has two equal roots then find the value of p.  


If one root of the quadratic equation `3x^2-10x+k=0` is reciprocal of the other , find the value  of k.  

 


The total cost of a certain length of a piece of cloth is Rs 200. If the piece was 5 m longer and each metre of cloth costs Rs 2 less, the cost of the piece would have remained unchanged. How long is the piece and what is its original rate per metre ?


Decide whether the following equation is quadratic equation or not.

\[x + \frac{1}{x} = - 2\] 


Decide whether the following equation is quadratic equation or not.

(m + 2) (m – 5) = 0


Solve the following quadratic equation.

`1/(x + 5) = 1/x^2`


Solve any four of the following. 

Find the value of y in the equation x + y = 12, when x = 5


In the adjoining fig. `square` ABCD is a trapezium AB || CD and its area is 33 cm2. From the information given in the figure find the lengths of all sides of the `square` ABCD. Fill in the empty boxes to get the solution.

Solution: `square` ABCD is a trapezium.

AB || CD

`"A"(square "ABCD") = 1/2 ("AB" + "CD") xx`______

33 = `1/2 ("x" + 2"x" + 1) xx `______

∴ ______ = (3x + 1) × ______

∴ 3x2 +______ − ______ = 0

∴ 3x(______) + 10(______) = 0

∴ (3x + 10) (______) = 0

∴ (3x + 10) = 0 or ______ = 0

∴ x = `-10/3` or x = ______

But length is never negative.

∴ `"x" ≠ -10/3`

∴ x = ______

AB = ______, CD = ______, AD = BC = ______


If both the roots of the quadratic equation x2 – 2kx + k2 + k – 5 = 0 are less than 5, then k lies in the interval is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×