Advertisements
Advertisements
प्रश्न
If roots of a quadratic equation 3y2 + ky + 12 = 0 are real and equal, then find the value of ‘k’
उत्तर
3y2 + ky + 12 = 0
Comparing the above equation with
ax2 + by + c = 0, we get
a = 3, b = k, c = 12
∆ = b2 – 4ac
= (k)2 – 4 × 3 × 12
= k2 – 144
= k2 – (12)2
∆ = (k + 12)(k – 12) ......[∵ a2 – b2 = (a + b)(a − b)]
Since the roots are real and equal,
∆ = 0
∴ (k + 12)(k – 12) = 0
∴ k + 12 = 0 or k – 12 = 0
∴ k = – 12 or k = 12
संबंधित प्रश्न
If the quadratic equation px2 − 2√5px + 15 = 0 has two equal roots then find the value of p.
Without solving, examine the nature of roots of the equation 2x2 + 2x + 3 = 0
The 4th term of an A.P. is 22 and the 15th term is 66. Find the first terns and the common
difference. Hence find the sum of the series to 8 terms.
Solve for x using the quadratic formula. Write your answer corrected to two significant figures. (x - 1)2 - 3x + 4 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
4x2 - 3kx + 1 = 0
In the following determine the set of values of k for which the given quadratic equation has real roots:
kx2 + 6x + 1 = 0
Find the value of the discriminant in the following quadratic equation :
x2 +2x+4=0
Determine the nature of the roots of the following quadratic equation :
(x - 1)(2x - 7) = 0
If x = 2 and x = 3 are roots of the equation 3x² – 2kx + 2m = 0. Find the values of k and m.
Determine whether the given quadratic equations have equal roots and if so, find the roots:
x2 + 5x + 5 = 0
In each of the following, determine whether the given numbers are roots of the given equations or not; 6x2 – x – 2 = 0; `(-1)/(2), (2)/(3)`
Find the value(s) of m for which each of the following quadratic equation has real and equal roots: (3m + 1)x2 + 2(m + 1)x + m = 0
If the roots of the given quadratic equation are real and equal, then find the value of ‘m’.
(m – 12)x2 + 2(m – 12)x + 2 = 0
If the roots of ax2 + bx + c = 0 are in the ratio m : n, then:
Equation (x + 1)2 – x2 = 0 has ____________ real root(s).
(x2 + 1)2 – x2 = 0 has ______.
Every quadratic equations has at most two roots.
Find whether the following equation have real roots. If real roots exist, find them.
`x^2 + 5sqrt(5)x - 70 = 0`
The sum of all integral values of k(k ≠ 0) for which the equation `2/(x - 1), 1/(x - 2) = 2/k` in x has no real roots, is ______.
The nature of roots of the quadratic equation 9x2 – 6x – 2 = 0 is ______.