Advertisements
Advertisements
प्रश्न
If the point A(2, – 4) is equidistant from P(3, 8) and Q(–10, y), find the values of y. Also find distance PQ.
उत्तर
Given points are A(2, – 4), P(3, 8) and Q(–10, y)
According to the question,
PA = QA
`sqrt((2 - 3)^2 + (-4 - 8)^2) = sqrt((2 + 10)^2 + (-4 - y)^2)`
`sqrt((-1)^2 + (-12)^2) = sqrt((12)^2 + (4 + y)^2)`
`sqrt(1 + 144) = sqrt(144 + 16 + y^2 + 8y)`
`sqrt(145) = sqrt(160 + y^2 + 8y)`
On squaring both sides, we get
145 = 160 + y2 + 8y
y2 + 8y + 160 – 145 = 0
y2 + 8y + 15 = 0
y2 + 5y + 3y + 15 = 0
y(y + 5) + 3(y + 5) = 0
⇒ (y + 5)(y + 3) = 0
⇒ y + 5 = 0
⇒ y = –5
And y + 3 = 0
⇒ y = –3
∴ y = – 3, – 5
Now, PQ = `sqrt((-10 - 3)^2 + (y - 8)^2`
For y = – 3
PQ = `sqrt((-13)^2 + (-3 - 8)^2`
= `sqrt(169 + 121)`
= `sqrt(290)` units
And for y = – 5
PQ = `sqrt((-13)^2 + (-5 - 8)^2`
= `sqrt(169 + 169)`
= `sqrt(338)` units
Hence, values of y are – 3 and – 5, PQ = `sqrt(290)` and `sqrt(338)`
APPEARS IN
संबंधित प्रश्न
Find the value of x, if the distance between the points (x, – 1) and (3, 2) is 5.
If the distance between the points (4, k) and (1, 0) is 5, then what can be the possible values of k?
Find the distance between the following pair of points:
(-6, 7) and (-1, -5)
If the point P(x, y ) is equidistant from the points A(5, 1) and B (1, 5), prove that x = y.
Find value of x for which the distance between the points P(x,4) and Q(9,10) is 10 units.
Find the distances between the following point.
A(a, 0), B(0, a)
What point on the x-axis is equidistant from the points (7, 6) and (-3, 4)?
Show that the points P (0, 5), Q (5, 10) and R (6, 3) are the vertices of an isosceles triangle.
Find distance between point A(–1, 1) and point B(5, –7):
Solution: Suppose A(x1, y1) and B(x2, y2)
x1 = –1, y1 = 1 and x2 = 5, y2 = – 7
Using distance formula,
d(A, B) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`
∴ d(A, B) = `sqrt(square +[(-7) + square]^2`
∴ d(A, B) = `sqrt(square)`
∴ d(A, B) = `square`
Find distance between points P(– 5, – 7) and Q(0, 3).
By distance formula,
PQ = `sqrt(square + (y_2 - y_1)^2`
= `sqrt(square + square)`
= `sqrt(square + square)`
= `sqrt(square + square)`
= `sqrt(125)`
= `5sqrt(5)`