Advertisements
Advertisements
Question
If the point A(2, – 4) is equidistant from P(3, 8) and Q(–10, y), find the values of y. Also find distance PQ.
Solution
Given points are A(2, – 4), P(3, 8) and Q(–10, y)
According to the question,
PA = QA
`sqrt((2 - 3)^2 + (-4 - 8)^2) = sqrt((2 + 10)^2 + (-4 - y)^2)`
`sqrt((-1)^2 + (-12)^2) = sqrt((12)^2 + (4 + y)^2)`
`sqrt(1 + 144) = sqrt(144 + 16 + y^2 + 8y)`
`sqrt(145) = sqrt(160 + y^2 + 8y)`
On squaring both sides, we get
145 = 160 + y2 + 8y
y2 + 8y + 160 – 145 = 0
y2 + 8y + 15 = 0
y2 + 5y + 3y + 15 = 0
y(y + 5) + 3(y + 5) = 0
⇒ (y + 5)(y + 3) = 0
⇒ y + 5 = 0
⇒ y = –5
And y + 3 = 0
⇒ y = –3
∴ y = – 3, – 5
Now, PQ = `sqrt((-10 - 3)^2 + (y - 8)^2`
For y = – 3
PQ = `sqrt((-13)^2 + (-3 - 8)^2`
= `sqrt(169 + 121)`
= `sqrt(290)` units
And for y = – 5
PQ = `sqrt((-13)^2 + (-5 - 8)^2`
= `sqrt(169 + 169)`
= `sqrt(338)` units
Hence, values of y are – 3 and – 5, PQ = `sqrt(290)` and `sqrt(338)`
APPEARS IN
RELATED QUESTIONS
If the point (x, y) is equidistant from the points (a + b, b – a) and (a – b, a + b), prove that bx = ay
If the point P(x, y ) is equidistant from the points A(5, 1) and B (1, 5), prove that x = y.
`" Find the distance between the points" A ((-8)/5,2) and B (2/5,2)`
Prove that the points (a, b), (a + 3, b + 4), (a − 1, b + 7) and (a − 4, b + 3) are the vertices of a parallelogram.
Show that the points (2, 0), (–2, 0), and (0, 2) are the vertices of a triangle. Also, a state with the reason for the type of triangle.
Find the distance of the following points from origin.
(a cos θ, a sin θ).
Find distance between point A(7, 5) and B(2, 5)
Find distance of point A(6, 8) from origin
The distance between the points A(0, 6) and B(0, –2) is ______.
Point P(0, 2) is the point of intersection of y-axis and perpendicular bisector of line segment joining the points A(–1, 1) and B(3, 3).