मराठी

Find the area of the triangle whose vertices are (–8, 4), (–6, 6) and (–3, 9). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the area of the triangle whose vertices are (–8, 4), (–6, 6) and (–3, 9).

बेरीज

उत्तर

Given that, the vertices of triangles are (–8, 4), (–6, 6) and (–3, 9).

Let (x1, y1) `→` (−8, 4)

(x2, y2) `→` (−6, 6)

And (x3, y3) `→` (−3, 9)

We know that, the area of triangle with vertices

(x1, y1), (x2, y2) and (x3, y3)

Δ = `1/2[x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]`

= `1/2[-8(6 - 9) - 6(9 - 4) + (-3)(4 - 6)]`

= `1/2[-8(-3) - 6(5) - 3(-2)]`

= `1/2(24 - 30 + 6)`

= `1/2(30 - 30)`

= `1/2(0)`

= 0

Hence, the required area of triangle is 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Coordinate Geometry - Exercise 7.3 [पृष्ठ ८४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 7 Coordinate Geometry
Exercise 7.3 | Q 9 | पृष्ठ ८४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×