Advertisements
Advertisements
प्रश्न
If the X and Y-intercepts of lines L are 2 and 3 respectively then find the slope of line L.
उत्तर
Given, x-intercept of line L is 2 and
the y-intercept of line L is 3
∴ The line L intersects X-axis at (2, 0) and Y-axis at (0, 3).
∴ The line L passes through (2, 0) and (0, 3).
∴ Slope of line L = `(y_2 - y_1)/(x_2 - x_1)=(3 - 0)/(0 - 2)=(-3)/2`
APPEARS IN
संबंधित प्रश्न
Find the slope of the following line which passes through the points:
G(7, 1), H(−3, 1)
Find the slope of the line whose inclination is 30°
A line makes intercepts 3 and 3 on the co-ordinate axes. Find the inclination of the line.
Without using Pythagoras theorem show that points A(4, 4), B(3, 5) and C(−1, −1) are the vertices of a right angled triangle.
Find the slope of the line which makes angle of 45° with the positive direction of the Y-axis measured anticlockwise
Find the acute angle between the X-axis and the line joining points A(3, −1) and B(4, −2).
A line passes through points A(x1, y1) and B(h, k). If the slope of the line is m then show that k − y1 = m(h − x1)
Select the correct option from the given alternatives:
If kx + 2y − 1 = 0 and 6x − 4y + 2 = 0 are identical lines, then determine k
Answer the following question:
Find the value of k the point P(1, k) lies on the line passing through the points A(2, 2) and B(3, 3)
Answer the following question:
Line through A(h, 3) and B(4, 1) intersect the line 7x − 9y − 19 = 0 at right angle Find the value of h
Find the equation of the lines passing through the point (1,1) with slope 3
Find the equation of the lines passing through the point (1, 1) and the perpendicular from the origin makes an angle 60° with x-axis
If p is length of perpendicular from origin to the line whose intercepts on the axes are a and b, then show that `1/("p"^3) = 1/("a"^2) + 1/("b"^2)`
An object was launched from a place P in constant speed to hit a target. At the 15th second, it was 1400 m from the target, and at the 18th second 800 m away. Find the distance between the place and the target
An object was launched from a place P in constant speed to hit a target. At the 15th second, it was 1400 m from the target, and at the 18th second 800 m away. Find the distance covered by it in 15 seconds
Population of a city in the years 2005 and 2010 are 1,35,000 and 1,45,000 respectively. Find the approximate population in the year 2015. (assuming that the growth of population is constant)
Find the equation of the line, if the perpendicular drawn from the origin makes an angle 30° with x-axis and its length is 12
Find the equation of the straight lines passing through (8, 3) and having intercepts whose sum is 1
A 150 m long train is moving with constant velocity of 12.5 m/s. Find the equation of the motion of the train
A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time is shown in the following table
Weight (kg) | 2 | 4 | 5 | 8 |
Length (cm) | 3 | 4 | 4.5 | 6 |
Find the equation relating the length of the spring to the weight on it
A spring was hung from a hook in the ceiling. A number of different weights were attached to the spring to make it stretch, and the total length of the spring was measured each time is shown in the following table
Weight (kg) | 2 | 4 | 5 | 8 |
Length (cm) | 3 | 4 | 4.5 | 6 |
How long will the spring be when 6 kilograms of weight on it?
A family is using Liquefied petroleum gas (LPG) of weight 14.2 kg for consumption. (Full weight 29.5kg includes the empty cylinders tare weight of 15.3kg.). If it is used with constant rate then it lasts for 24 days. Then the new cylinder is replaced. Find the equation relating the quantity of gas in the cylinder to the days
In a shopping mall there is a hall of cuboid shape with dimension 800 × 800 × 720 units, which needs to be added the facility of an escalator in the path as shown by the dotted line in the figure. Find the slopes of the escalator at the turning points
Choose the correct alternative:
Straight line joining the points (2, 3) and (−1, 4) passes through the point (α, β) if
Choose the correct alternative:
The line (p + 2q)x + (p − 3q)y = p − q for different values of p and q passes through the point
If one of the lines given by kx2 + 2xy – 3y2 = 0 is perpendicular to the line 3x + 5y+ 1 = 0, then the value of k is ______.
The locus of the point of intersection of the lines xcosα + ysinα = α and xsinα – ycosα = b(where α is a variable) is ______.
Find the coordinates of the point which divides the line segment joining the points (1, –2, 3) and (3, 4, –5) internally in the ratio 2 : 3.