मराठी

If Two Straight Lines Intersect Each Other, Prove that the Ray Opposite to the Bisector of One of the Angles Thus Formed Bisects the Vertically Opposite Angle. - Mathematics

Advertisements
Advertisements

प्रश्न

If two straight lines intersect each other, prove that the ray opposite to the bisector of one of the angles thus formed bisects the vertically opposite angle.

थोडक्यात उत्तर

उत्तर

Let AB and CD intersect at a point O

Also, let us draw the bisector OP of ∠AOC.

Therefore,

 ∠AOP = ∠POC       (1)

Also, let’s extend OP to Q.

We need to show that, OQ bisects ∠BOD.

Let us assume that OQ bisects∠BOD, now we shall prove that POQ is a line.

We know that,

∠AOCand ∠DOBare vertically opposite angles. Therefore, these must be equal, that is:

 ∠AOC = ∠DOB       (2)

∠AOPand ∠BOQ are vertically opposite angles. Therefore,

 ∠AOP = ∠BOQ

Similarly,

 ∠POC = ∠DOQ

We know that:

∠AOP +∠AOD+∠DOQ+∠POC+∠BOC+∠BOQ = 360°

                     2∠AOP+∠AOD+2∠DOQ+∠BOC =360°

                            2∠AOP + 2∠AOD+ 2∠DOQ = 360°

                                2(∠AOP+∠AOD+ ∠DOQ) = 360°

                                     ∠AOP+∠AOD+ ∠DOQ = `(360°)/2`

                                     ∠AOP+∠AOD+ ∠DOQ = 180°

Thus, POQ is a straight line.

Hence our assumption is correct. That is,

We can say that if the two straight lines intersect each other, then the ray opposite to the bisector of one of the angles thus formed bisects the vertically opposite angles.

shaalaa.com
Introduction to Lines and Angles
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Lines and Angles - Exercise 10.3 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 10 Lines and Angles
Exercise 10.3 | Q 13 | पृष्ठ २३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×