Advertisements
Advertisements
प्रश्न
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x3 + 2ax2 + ax - 1
उत्तर
Let p(x) x3 + 2ax2 + ax - 1 ...(i)
Since, (x - 2) is a factor of p(x), so p(2) = 0
Put x = 2 in equation (i), we get
p(2) = (2)3 - 2a(2)2 + a(2) -1
= 8 - 2a x 4 + 2a - 1
= 8 - 8a + 2a -1
= 7 - 6a
But p(2) = 0
7 - 6a = 0
⇒ -6a = -7
⇒ a = `(+7)/(+6)`
⇒ a = `(7)/(6)`.
APPEARS IN
संबंधित प्रश्न
When divided by x – 3 the polynomials x3 – px2 + x + 6 and 2x3 – x2 – (p + 3) x – 6 leave the same remainder. Find the value of ‘p’.
Using the Remainder Theorem, factorise each of the following completely.
3x3 + 2x2 – 23x – 30
Using the Reminder Theorem, factorise of the following completely.
2x3 + x2 – 13x + 6
Find the value of a and b so that the polynomial x3 - ax2 - 13x + b has (x - 1) (x + 3) as factor.
If x – 2 is a factor of each of the following three polynomials. Find the value of ‘a’ in each case:
x5 - 3x4 - ax3 + 3ax2 + 2ax + 4.
Show that x2 - 9 is factor of x3 + 5x2 - 9x - 45.
When 3x2 – 5x + p is divided by (x – 2), the remainder is 3. Find the value of p. Also factorise the polynomial 3x2 – 5x + p – 3.
Use factor theorem to factorise the following polynomials completely: x3 – 19x – 30
One factor of x3 – kx2 + 11x – 6 is x – 1. The value of k is ______.
If f(x) = 3x + 8; the value of f(x) + f(– x) is ______.