मराठी

In Fig. 3, ∠Acb = 90° and Cd ⊥ Ab, Prove that Cd2 = Bd X Ad. - Mathematics

Advertisements
Advertisements

प्रश्न

In Fig. 3, ∠ACB = 90° and CD ⊥ AB, prove that CD2 = BD x AD.

बेरीज

उत्तर

Given that :
CD ⊥ AB
∠ACB = 90°

To Prove : CD2 = BD x AD
Using Pythagoras Theorem in ΔACD
AC2 = AD2 + CD                                 ....(1)

Using Pythagoras Theorem in ΔCDB
CB2 = BD2 + CD2                                   ....(2)

Similarly in ΔABC,
AB2 = AC2 + BC2                                    ....(3)

As AB = AD + DB
⇒AB = AD + BD                                     ....(4) 

Squaring both sides of equation (4), we get
(AB)2 = (AD+BD)2
⇒AB2 = AD2 + BD2 + 2 x BD x AD

From equation (3) we get 
⇒ AC2 + BC2 = AD2 + BD2 + 2 x BD x AD

Substituting the value of AC2 from equation (1) and the value of BC2 from eqution (2), we get
AD2 + CD2 + BD2 + CD2 = AD2 + BD2 + 2 x BD x AD
⇒ 2 CD2 = 2 x BD x AD
⇒ CD2 = BD x AD
Hence Proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 30/1/3

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×