मराठी

In Fig. Below, M, N and P Are the Mid-points of Ab, Ac and Bc Respectively. If Mn = 3 Cm, Np = 3.5 Cm and Mp = 2.5 Cm, Calculate Bc, Ab and Ac. - Mathematics

Advertisements
Advertisements

प्रश्न

In Fig. below, M, N and P are the mid-points of AB, AC and BC respectively. If MN = 3 cm, NP = 3.5 cm and MP = 2.5 cm, calculate BC, AB and AC.

उत्तर

Given MN = 3cm, NP = 3.5cm and MP = 2.5cm

To find BC, AB and AC

In ΔABC

M and N are midpoints of AB and AC

∴MN = `1/2` BC, MN || BC      [By midpoint theorem]

⇒  3 = `1/2` BC

⇒ 3× 2 = BC

⇒ BC = 6cm

Similarly

AC = 2MP = 2 (2.5) = 5cm

AB = 2NP = 2(3.5) = 7cm

 

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Quadrilaterals - Exercise 13.4 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 13 Quadrilaterals
Exercise 13.4 | Q 8 | पृष्ठ ६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In Fig. below, BE ⊥ AC. AD is any line from A to BC intersecting BE in H. P, Q and R are
respectively the mid-points of AH, AB and BC. Prove that ∠PQR = 90°.


BM and CN are perpendiculars to a line passing through the vertex A of a triangle ABC. If
L is the mid-point of BC, prove that LM = LN.


ABCD is a quadrilateral in which AD = BC. E, F, G and H are the mid-points of AB, BD, CD and Ac respectively. Prove that EFGH is a rhombus.


In trapezium ABCD, AB is parallel to DC; P and Q are the mid-points of AD and BC respectively. BP produced meets CD produced at point E.

Prove that:

  1. Point P bisects BE,
  2. PQ is parallel to AB.

In parallelogram ABCD, E and F are mid-points of the sides AB and CD respectively. The line segments AF and BF meet the line segments ED and EC at points G and H respectively.
Prove that:
(i) Triangles HEB and FHC are congruent;
(ii) GEHF is a parallelogram.


In a right-angled triangle ABC. ∠ABC = 90° and D is the midpoint of AC. Prove that BD = `(1)/(2)"AC"`.


Show that the quadrilateral formed by joining the mid-points of the adjacent sides of a square is also a square.


ABCD is a kite in which BC = CD, AB = AD. E, F and G are the mid-points of CD, BC and AB respectively. Prove that: The line drawn through G and parallel to FE and bisects DA.


In ΔABC, the medians BE and CD are produced to the points P and Q respectively such that BE = EP and CD = DQ. Prove that: A is the mid-point of PQ.


In ΔABC, D and E are the midpoints of the sides AB and BC respectively. F is any point on the side AC. Also, EF is parallel to AB. Prove that BFED is a parallelogram.

Remark: Figure is incorrect in Question


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×