मराठी

In a Right-angled Triangle Abc. ∠Abc = 90° and D is the Midpoint of Ac. Prove that Bd = 1 2 Ac . - Mathematics

Advertisements
Advertisements

प्रश्न

In a right-angled triangle ABC. ∠ABC = 90° and D is the midpoint of AC. Prove that BD = `(1)/(2)"AC"`.

बेरीज

उत्तर


Draw line segment DE || CB, which meets AB at point E.
Now, DE || CB and AB is the transversal,
∴ ∠AED = ∠ABC    ....(corrresponding angles)
∠ABC = 90°             ....(given)
⇒ ∠AED = 90°
Also, as D is the mid-point of AC and DE || CB,
DE bisects side AB,
I.e. AE = BE            ....(i)
In ΔAED and ΔBED,
∠AED = ∠BED      ....(Each 90°)
AE = BE                 ....[From (i)]
DE = DE                ....(Common)
∴ ΔAED ≅ ΔBEd   ....(By SAS Test)
⇒ AD = BD           ....(C.P.C.T.C)
⇒ BD = AC
⇒ BD = `(1)/(2)"AC"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 15: Mid-point and Intercept Theorems - Exercise 15.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 15 Mid-point and Intercept Theorems
Exercise 15.1 | Q 11
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×