Advertisements
Advertisements
प्रश्न
In the figure, find AR
उत्तर
∆AFI, ∆FRI are right triangles.
By Pythagoras theorem,
AF2 = AI2 – FI2
= 252 – 152
= 625 – 225
= 400
= 202
∴ AF = 20 feet.
FR2 = RI2 – FI2
= 172 – 152
= 289 – 225
= 64
= 82
FR = 8 feet.
∴ AR = AF + FR
= 20 + 8
= 28 feet.
APPEARS IN
संबंधित प्रश्न
ABCD is a rhombus. Prove that AB2 + BC2 + CD2 + DA2= AC2 + BD2
P and Q are the mid-points of the sides CA and CB respectively of a ∆ABC, right angled at C. Prove that:
`(i) 4AQ^2 = 4AC^2 + BC^2`
`(ii) 4BP^2 = 4BC^2 + AC^2`
`(iii) (4AQ^2 + BP^2 ) = 5AB^2`
In the given figure, ABC is a triangle in which ∠ABC> 90° and AD ⊥ CB produced. Prove that AC2 = AB2 + BC2 + 2BC.BD.
Identify, with reason, if the following is a Pythagorean triplet.
(11, 60, 61)
Prove that `(sin θ + cosec θ)^2 + (cos θ + sec θ)^2 = 7 + tan^2 θ + cot^2 θ`.
Prove that in a right angle triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.
Find the Pythagorean triplet from among the following set of numbers.
4, 5, 6
Two poles of height 9m and 14m stand on a plane ground. If the distance between their 12m, find the distance between their tops.
Find the distance between the helicopter and the ship
In the adjoining figure, a tangent is drawn to a circle of radius 4 cm and centre C, at the point S. Find the length of the tangent ST, if CT = 10 cm.