मराठी

In the given figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that: (i) ACADBCDMBCAC2=AD2+BC.DM+(BC2)2 (ii) ABADBCDMBCAB2=AD2-BC.DM+(BC2)2 (iii) ACABADBCAC2+AB2=2AD2+12BC2 - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that:

(i) `"AC"^2 = "AD"^2 + "BC"."DM" + (("BC")/2)^2`

(ii) `"AB"^2 = "AD"^2 - "BC"."DM" + (("BC")/2)^2`

(iii) `"AC"^2 + "AB"^2 = 2"AD"^2 + 1/2"BC"^2`

सिद्धांत

उत्तर

(i) Applying Pythagoras theorem in ΔAMD, we obtain

AM2 + MD2 = AD2 … (1)

Applying Pythagoras theorem in ΔAMC, we obtain

AM2 + MC2 = AC2

AM2 + (MD + DC)2 = AC2

(AM2 + MD2) + DC2 + 2MD.DC = AC2

AD2 + DC2 + 2MD.DC = AC2 [Using equation (1)]

Using the result, DC = `"BC"/2`, we obtain

`"AD"^2+(("BC")/2)^2 + 2"MD".(("BC")/2) = "AC"^2`

`"AD"^2+(("BC")/2)^2 + "MC" xx "BC" = "AC"^2`

(ii) Applying Pythagoras theorem in ΔABM, we obtain

AB2 = AM2 + MB2

= (AD2 − DM2) + MB2

= (AD2 − DM2) + (BD − MD)2

= AD2 − DM2 + BD2 + MD2 − 2BD × MD

= AD2 + BD2 − 2BD × MD

= `"AD"^2+(("BC")/2)^2 - 2(("BC")/2) xx "MD"`

= `"AD"^2 + ("BC"/2)^2 - "BC" xx "MD"`

(ii) Applying Pythagoras theorem in ΔABM, we obtain

AM2 + MB2 = AB2 … (1)

Applying Pythagoras theorem in ΔAMC, we obtain

AM2 + MC2 = AC2 … (2)

Adding equations (1) and (2), we obtain

2AM2 + MB2 + MC2 = AB2 + AC2

2AM2 + (BD − DM)2 + (MD + DC)2 = AB2 + AC2

2AM2+BD2 + DM2 − 2BD.DM + MD2 + DC2 + 2MD.DC = AB+ AC2

2AM2 + 2MD2 + BD2 + DC2 + 2MD (− BD + DC)

= AB2 + AC2

= `2("AM"^2 + "MD"^2) + (("BC")/2)^2 + (("BC")/2)^2 + 2"MD" ((-"BC")/2 + ("BC")/2) = "AB"^2 + "AC"^2`

`"2AD"^2 + ("BC"^2)/2 = "AB"^2 + "AC"^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Triangles - Exercise 6.6 [पृष्ठ १५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 6 Triangles
Exercise 6.6 | Q 5 | पृष्ठ १५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×