मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

In the Given Figure, ∠Dfe = 90°, Fg ⊥ Ed, If Gd = 8, Fg = 12, Find (1) Eg (2) Fd and (3) Ef - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In the given figure, ∠DFE = 90°, FG ⊥ ED, If GD = 8, FG = 12, find (1) EG (2) FD and (3) EF

बेरीज

उत्तर

We know that,
In a right angled triangle, the perpendicular segment to the hypotenuse from the opposite vertex, is the geometric mean of the segments into which the hypotenuse is divided.
Here, seg GF ⊥ seg ED

\[\therefore {GF}^2 = EG \times GD\]
\[ \Rightarrow {12}^2 = EG \times 8\]
\[ \Rightarrow 144 = EG \times 8\]
\[ \Rightarrow EG = \frac{144}{8}\]
\[ \Rightarrow EG = 18\]

Hence, EG = 18.
Now,
According to Pythagoras theorem, in ∆DGF

\[{DG}^2 + {GF}^2 = {FD}^2 \]
\[ \Rightarrow 8^2 + {12}^2 = {FD}^2 \]
\[ \Rightarrow 64 + 144 = {FD}^2 \]
\[ \Rightarrow {FD}^2 = 208\]
\[ \Rightarrow FD = 4\sqrt{13}\]

In ∆EGF

\[{EG}^2 + {GF}^2 = {EF}^2 \]
\[ \Rightarrow {18}^2 + {12}^2 = {EF}^2 \]
\[ \Rightarrow 324 + 144 = {EF}^2 \]
\[ \Rightarrow {EF}^2 = 468\]
\[ \Rightarrow EF = 6\sqrt{13}\]

Hence, FD =\[4\sqrt{13}\]  and  EF=\[6\sqrt{13}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Pythagoras Theorem - Practice Set 2.1 [पृष्ठ ३९]

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In Figure ABD is a triangle right angled at A and AC ⊥ BD. Show that AC2 = BC × DC


Tick the correct answer and justify: In ΔABC, AB = `6sqrt3` cm, AC = 12 cm and BC = 6 cm.

The angle B is:


ABC is a triangle right angled at C. If AB = 25 cm and AC = 7 cm, find BC.


In the given figure, ∆ABC is an equilateral triangle of side 3 units. Find the coordinates of the other two vertices ?


In ΔABC,  Find the sides of the triangle, if:

  1. AB =  ( x - 3 ) cm, BC = ( x + 4 ) cm and AC = ( x + 6 ) cm
  2. AB = x cm, BC = ( 4x + 4 ) cm and AC = ( 4x + 5) cm

Find the value of (sin2 33 + sin2 57°)


The sides of the triangle are given below. Find out which one is the right-angled triangle?

8, 15, 17


The sides of the triangle are given below. Find out which one is the right-angled triangle?

11, 60, 61


A man goes 10 m due east and then 24 m due north. Find the distance from the straight point.


The length of the diagonals of rhombus are 24cm and 10cm. Find each side of the rhombus.


In an equilateral triangle ABC, the side BC is trisected at D. Prove that 9 AD2 = 7 AB2.


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB2 = AD2 - BC x CE + `(1)/(4)"BC"^2`


A point OI in the interior of a rectangle ABCD is joined with each of the vertices A, B, C and D. Prove that  OB2 + OD2 = OC2 + OA2


In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.
Prove that: 9AQ2 = 9AC2 + 4BC2 


Choose the correct alternative:

If length of sides of a triangle are a, b, c and a2 + b2 = c2, then which type of triangle it is?


A flag pole 18 m high casts a shadow 9.6 m long. Find the distance of the top of the pole from the far end of the shadow.


In a quadrilateral ABCD, ∠A + ∠D = 90°. Prove that AC2 + BD2 = AD2 + BC2 

[Hint: Produce AB and DC to meet at E.]


In the given figure, AD is a median of a triangle ABC and AM ⊥ BC. Prove that:

(i) `"AC"^2 = "AD"^2 + "BC"."DM" + (("BC")/2)^2`

(ii) `"AB"^2 = "AD"^2 - "BC"."DM" + (("BC")/2)^2`

(iii) `"AC"^2 + "AB"^2 = 2"AD"^2 + 1/2"BC"^2`


The longest side of a right angled triangle is called its ______.


Height of a pole is 8 m. Find the length of rope tied with its top from a point on the ground at a distance of 6 m from its bottom.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×