मराठी

A Man Goes 10 M Due East and Then 24 M Due North. Find the Distance from the Straight Point. - Mathematics

Advertisements
Advertisements

प्रश्न

A man goes 10 m due east and then 24 m due north. Find the distance from the straight point.

बेरीज

उत्तर

Let O be the original position of the man.
From the figure, it is clear that B is the final position of the man.
ΔAOB is right-angled at A.
By Pythagoras theorem,
OB2 = OA2 + AB2
OB2 = (10m)2 + (24m)2
OB2 = 100m2 + 576m2
OB2 = 676m2
OB2 = (26m)2
OB = 26m
Thus, the man is at a distance of 26m from the straight point.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Pythagoras Theorem - Exercise 17.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 17 Pythagoras Theorem
Exercise 17.1 | Q 4

संबंधित प्रश्‍न

In a right triangle ABC, right-angled at B, BC = 12 cm and AB = 5 cm. The radius of the circle inscribed in the triangle (in cm) is
(A) 4
(B) 3
(C) 2
(D) 1


From a point O in the interior of a ∆ABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove
that :

`(i) AF^2 + BD^2 + CE^2 = OA^2 + OB^2 + OC^2 – OD^2 – OE^2 – OF^2`

`(ii) AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2`


ABC is an isosceles triangle right angled at C. Prove that AB2 = 2AC2 


Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals


ABC is a triangle right angled at C. If AB = 25 cm and AC = 7 cm, find BC.


A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.


In right angle ΔABC, if ∠B = 90°, AB = 6, BC = 8, then find AC.


In ΔABC,  Find the sides of the triangle, if:

  1. AB =  ( x - 3 ) cm, BC = ( x + 4 ) cm and AC = ( x + 6 ) cm
  2. AB = x cm, BC = ( 4x + 4 ) cm and AC = ( 4x + 5) cm

In the following figure, AD is perpendicular to BC and D divides BC in the ratio 1: 3.

Prove that : 2AC2 = 2AB2 + BC2


Find the length of diagonal of the square whose side is 8 cm.


The length of the diagonals of rhombus are 24cm and 10cm. Find each side of the rhombus.


In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AC2 - AB2 = 2BC x ED


In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.
Prove that: 9AQ2 = 9AC2 + 4BC2 


In a right-angled triangle ABC,ABC = 90°, AC = 10 cm, BC = 6 cm and BC produced to D such CD = 9 cm. Find the length of AD.


There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?


Foot of a 10 m long ladder leaning against a vertical wall is 6 m away from the base of the wall. Find the height of the point on the wall where the top of the ladder reaches.


A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.


In ∆PQR, PD ⊥ QR such that D lies on QR. If PQ = a, PR = b, QD = c and DR = d, prove that (a + b)(a – b) = (c + d)(c – d).


If the hypotenuse of one right triangle is equal to the hypotenuse of another right triangle, then the triangles are congruent.


Jayanti takes shortest route to her home by walking diagonally across a rectangular park. The park measures 60 metres × 80 metres. How much shorter is the route across the park than the route around its edges?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×