मराठी

In the given figure, ∠BAD = 65°, ∠ABD = 70° and ∠BDC = 45°. Find: ∠BCD ∠ACB Hence, show that AC is a diameter. - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, ∠BAD = 65°, ∠ABD = 70° and ∠BDC = 45°. Find:

  1. ∠BCD 
  2. ∠ACB

Hence, show that AC is a diameter.

बेरीज

उत्तर


i. In cyclic quadrilateral ABCD,

∠BCD = 180° – ∠BAD

= 180° – 65°

= 115°

(Pair of opposite angles in a cyclic quadrilateral are supplementary)

ii. By angle sum property of ∆ABD,

∠ADB = 180° – 65° – 70° = 45°

Again, ∠ACB = ∠ADB = 45°

(Angle in the same segment)

∴ ∠ADC = ∠ADB + ∠BDC

= 45° + 45°

= 90°

Hence, AC is a semicircle.

(Since angle in a semicircle is a right angle)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 17: Circles - Exercise 17 (A) [पृष्ठ २६२]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 17 Circles
Exercise 17 (A) | Q 54.1 | पृष्ठ २६२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×