Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
xn log x
उत्तर
`int x^"n" log x "d"x = int "udv"`
`int "udv" = "uv" - int "vdu"`
`int x^"n" log x "d"x = (log x) [x^("n" + 1)/("n"+ 1)] - int (x^("n" + 1)/("n" + 1)) (("d"x)/x)`
= `(x^("n" + 1)/("n"+ 1)) log x - 1/(("n" + 1)) int x^"n" "d"x`
= `(x^("n" + 1)/("n" + 1)) log x- 1/(("n" + 1)) (x^("n" + 1)/("n" + 1)) + "c"`
= `(x^("n" + 1)/("n" + 1)) [log x - 1/(("n"+ 1))] + "c"`
Successive derivatives | Repeated Integrals |
Take u = log x `"du"/("d"x) = 1/x` du = `("d"x)/x` |
dv = `x^"n" "d"x` `int "dv" = int x^"n" "d"x` v = `(x^("n" + 1)/("n" + 1))` |
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`1/(sqrt(x + 1) + sqrt(x - 1))`
Integrate the following with respect to x.
If f'(x) = `1/x` and f(1) = `pi/4`, then find f(x)
Integrate the following with respect to x.
If f'(x) = ex and f(0) = 2, then find f(x)
Integrate the following with respect to x.
2 cos x – 3 sin x + 4 sec2x – 5 cosec2x
Integrate the following with respect to x.
x8(1 + x9)5
Integrate the following with respect to x.
`x/(2x^4 - 3x^2 - 2)`
Integrate the following with respect to x.
`1/(9 - 8x - x^2)`
Evaluate the following integral:
`int ("d"x)/("e"^x + 6 + 5"e"^-x)`
Evaluate the following integral:
`sqrt(9x^2 + 12x + 3) "d"x`
Evaluate the following integral:
`int_0^1 sqrt(x(x - 1)) "d"x`