मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Is It Possible to Add Two Vectors of Unequal Magnitudes and Get Zero? is It Possible to Add Three Vectors of Equal Magnitudes and Get Zero? - Physics

Advertisements
Advertisements

प्रश्न

Is it possible to add two vectors of unequal magnitudes and get zero? Is it possible to add three vectors of equal magnitudes and get zero?

थोडक्यात उत्तर

उत्तर

No, it is not possible to obtain zero by adding two vectors of unequal magnitudes.
Example: Let us add two vectors  \[\vec{A}\] and  \[\vec{B}\] of unequal magnitudes acting in opposite directions. The resultant vector is given by 

\[R = \sqrt{A^2 + B^2 + 2AB\cos\theta}\]

If two vectors are exactly opposite to each other, then

\[\theta = 180^\circ, \cos180^\circ= - 1\]

\[R = \sqrt{A^2 + B^2 - 2AB}\]

\[ \Rightarrow R = \sqrt{\left( A - B \right)^2}\]

\[ \Rightarrow R = \left( A - B \right) \text { or } \left( B - A \right)\]

From the above equation, we can say that the resultant vector is zero (R = 0) when the magnitudes of the vectors  \[\vec{A}\] and \[\vec{B}\] are equal (A = B) and both are acting in the opposite directions. 
Yes, it is possible to add three vectors of equal magnitudes and get zero.
Lets take three vectors of equal magnitudes
\[\vec{A,} \vec{B} \text { and } \vec{C}\] ,given these three vectors make an angle of \[120^\circ\] with each other. Consider the figure below:
Lets examine the components of the three vectors.
 

\[A_x = A\]

\[ A_y = 0\]

\[ B_x = - B \cos 60^\circ\]

\[ B_y = B \sin 60^\circ\]

\[ C_x = - C \cos 60^\circ\]

\[ C_y = - C \sin 60^\circ\]

\[\text { Here, A = B = C }\]

So, along the x - axis , we have: 

\[A - (2A \cos 60^\circ) = 0, as \cos 60^\circ = \frac{1}{2} \]

\[ \Rightarrow B \sin 60^\circ - C \sin 60^\circ = 0\]
Hence, proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Physics and Mathematics - Short Answers [पृष्ठ २७]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 2 Physics and Mathematics
Short Answers | Q 2 | पृष्ठ २७

संबंधित प्रश्‍न

What are the dimensions of volume of a cube of edge a.


It is desirable that the standards of units be easily available, invariable, indestructible and easily reproducible. If we use foot of a person as a standard unit of length, which of the above features are present and which are not?


Suggest a way to measure the thickness of a sheet of paper.


A unitless quantity


Find the dimensions of
(a) angular speed ω,
(b) angular acceleration α,
(c) torque τ and
(d) moment of interia I.
Some of the equations involving these quantities are \[\omega = \frac{\theta_2 - \theta_1}{t_2 - t_1}, \alpha = \frac{\omega_2 - \omega_1}{t_2 - t_1}, \tau = F . r \text{ and }I = m r^2\].
The symbols have standard meanings.


Find the dimensions of electric field E. 

The relevant equations are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]
where F is force, q is charge, v is speed, I is current, and a is distance.


Find the dimensions of the specific heat capacity c.
(a) the specific heat capacity c,
(b) the coefficient of linear expansion α and
(c) the gas constant R.
Some of the equations involving these quantities are \[Q = mc\left( T_2 - T_1 \right), l_t = l_0 \left[ 1 + \alpha\left( T_2 - T_1 \right) \right]\] and PV = nRT.


The height of mercury column in a barometer in a Calcutta laboratory was recorded to be 75 cm. Calculate this pressure in SI and CGS units using the following data : Specific gravity of mercury = \[13 \cdot 6\] , Density of \[\text{ water} = {10}^3 kg/ m^3 , g = 9 \cdot 8 m/ s^2\] at Calcutta. Pressure
= hpg in usual symbols.


Can a vector have zero component along a line and still have nonzero magnitude?


The component of a vector is 


A situation may be described by using different sets coordinate axes having different orientation. Which the following do not depended on the orientation of the axis?
(a) the value of a scalar
(b) component of a vector
(c) a vector
(d) the magnitude of a vector.


Let \[\vec{C} = \vec{A} + \vec{B}\]


Add vectors \[\vec{A} , \vec{B} \text { and } \vec{C}\]  each having magnitude of 100 unit and inclined to the X-axis at angles 45°, 135° and 315° respectively.


Let \[\vec{a} = 4 \vec{i} + 3 \vec{j} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j}\]. Find the magnitudes of (a)  \[\vec{a}\] ,  (b)  \[\vec{b}\] ,(c) \[\vec{a} + \vec{b} \text { and }\] (d) \[\vec{a} - \vec{b}\].


Prove that \[\vec{A} . \left( \vec{A} \times \vec{B} \right) = 0\].


Give an example for which \[\vec{A} \cdot \vec{B} = \vec{C} \cdot \vec{B} \text{ but } \vec{A} \neq \vec{C}\].


Draw a graph from the following data. Draw tangents at x = 2, 4, 6 and 8. Find the slopes of these tangents. Verify that the curve draw is y = 2x2 and the slope of tangent is \[\tan \theta = \frac{dy}{dx} = 4x\] 
\[\begin{array}x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ y & 2 & 8 & 18 & 32 & 50 & 72 & 98 & 128 & 162 & 200\end{array}\]


Write the number of significant digits in (a) 1001, (b) 100.1, (c) 100.10, (d) 0.001001.


Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72˝. Calculate the diameter of Jupiter.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×