Advertisements
Advertisements
प्रश्न
Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is 800 m2? If so, find its length and breadth.
उत्तर १
Let the breadth of mango grove be l.
Length of mango grove will be 2l.
Area of mango grove = (2l) (l) = 2l2
2l2 = 800
l2 = `800/2`
l2 = 400
l2 - 400 = 0
Comparing this equation with al2 + bl + c = 0, we get
a = 1, b = 0, c = 400
Discriminant = b2 - 4ac = (0)2 - 4 × (1) × (- 400)
= 1600
Here, b2 - 4ac > 0
Therefore, the equation will have real roots. And hence, the desired rectangular mango grove can be designed.
l = ±20
However, length cannot be negative.
Therefore, breadth of mango grove = 20 m
Length of mango grove = 2 × 20 = 40 m
उत्तर २
Let the breadth of the rectangular mango grove be x meter and the length 2x meters. Then
Area of the rectangle
length x breadth = 800
x(2x) = 800
2x2 = 800
x2 = 400
x = `sqrt400`
x = `+-20`
Sides of the rectangular hall never be negative.
Therefore, length
2x = 2(20) = 40
Yes, it is possible.
Hence, breadth of the hall be 20 meters and length be 40 meters.
संबंधित प्रश्न
Solve for x: `1/(x+1)+2/(x+2)=4/(x+4), `x ≠ -1, -2, -3
Find the values of k for which the quadratic equation (3k + 1) x2 + 2(k + 1) x + 1 = 0 has equal roots. Also, find the roots.
Without solving, examine the nature of roots of the equation 4x2 – 4x + 1 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
`kx^2-2sqrt5x+4=0`
In the following determine the set of values of k for which the given quadratic equation has real roots:
2x2 + kx + 2 = 0
Find the values of k for which the given quadratic equation has real and distinct roots:
kx2 + 6x + 1 = 0
If the roots of the equations ax2 + 2bx + c = 0 and `bx^2-2sqrt(ac)x+b = 0` are simultaneously real, then prove that b2 = ac.
Solve the following quadratic equation using formula method only
5x2 - 19x + 17 = 0
Find the value of k for which the roots of the equation 3x2 - 10x + k = 0 are reciprocal of each other.
(3x - 5)(2x + 7) = 0
In each of the following, determine whether the given numbers are roots of the given equations or not; 6x2 – x – 2 = 0; `(-1)/(2), (2)/(3)`
Discuss the nature of the roots of the following quadratic equations : -2x2 + x + 1 = 0
Which of the following equations has 2 as a root?
Choose the correct answer from the given four options :
If the equation {k + 1)x² – 2(k – 1)x + 1 = 0 has equal roots, then the values of k are
Find the value(s) of k for which each of the following quadratic equation has equal roots: 3kx2 = 4(kx – 1)
The roots of the quadratic equation `2"x"^2 - 2sqrt2"x" + 1 = 0` are:
State whether the following quadratic equation have two distinct real roots. Justify your answer.
x2 – 3x + 4 = 0
If b = 0, c < 0, is it true that the roots of x2 + bx + c = 0 are numerically equal and opposite in sign? Justify.
Find the roots of the quadratic equation by using the quadratic formula in the following:
`x^2 + 2sqrt(2)x - 6 = 0`
The roots of equation (q – r)x2 + (r – p)x + (p – q) = 0 are equal. Prove that: 2q = p + r, that is, p, q and r are in A.P.