Advertisements
Advertisements
प्रश्न
ज्ञात कीजिए कि चर z परिमेय संख्या निरूपित करता है या अपरिमेय संख्या।
z2 = 0.04
उत्तर
z2 = 0.04
हल करने पर, हमें प्राप्त होता है।
⇒ z = ± 0.2
अतः, z एक परिमेय संख्या है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित व्यंजक को सरल कीजिए:
`(sqrt5 + sqrt2)^2`
आपको याद हो कि π को एक वृत्त की परिधि (मान लीजिए c) और उसके व्यास (मान लीजिए d) के अनुपात से परिभाषित किया जाता है, अर्थात् π = `c/d` है। यह इस तथ्य का अंतर्विरोध करता हुआ प्रतीत होता है कि π अपरिमेय है। इस अंतर्विरोध का निराकरण आप किस प्रकार करेंगे?
ज्ञात कीजिए कि चर u परिमेय संख्या निरूपित करता है या अपरिमेय संख्या।
`u^2 = 17/4`
निम्नलिखित को सरल कीजिए :
`(sqrt(3) - sqrt(2))^2`
निम्नलिखित को सरल कीजिए :
`3/sqrt(8) + 1/sqrt(2)`
निम्नलिखित के हर का परिमेयीकरण कीजिए :
`sqrt(6)/(sqrt(2) + sqrt(3))`
निम्नलिखित के हर का परिमेयीकरण कीजिए :
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`
निम्नलिखित में हर का परिमेयीकरण कीजिए और फिर `sqrt(2) = 1.414, sqrt(3) = 1.732` और `sqrt(5) = 2.236` लेते हुए तीन दशमलव स्थानों तक का मान ज्ञात कीजिए।
`4/sqrt(3)`
निम्नलिखित में हर का परिमेयीकरण कीजिए और फिर `sqrt(2) = 1.414, sqrt(3) = 1.732` और `sqrt(5) = 2.236` लेते हुए तीन दशमलव स्थानों तक का मान ज्ञात कीजिए।
`6/sqrt(6)`
सरल कीजिए :
`[((625)^(-1/2))^((-1)/4)]^2`