Advertisements
Advertisements
प्रश्न
आपको याद हो कि π को एक वृत्त की परिधि (मान लीजिए c) और उसके व्यास (मान लीजिए d) के अनुपात से परिभाषित किया जाता है, अर्थात् π = `c/d` है। यह इस तथ्य का अंतर्विरोध करता हुआ प्रतीत होता है कि π अपरिमेय है। इस अंतर्विरोध का निराकरण आप किस प्रकार करेंगे?
उत्तर
जब हम किसी पैमाना या किसी अन्य उपकरण का उपयोग करके किसी रेखा की लंबाई मापते हैं, तो हम केवल एक अनुमानित परिमेय मान प्राप्त करते हैं; c और d दोनों अपरिमेय हैं।
∴ `c/d` अपरिमेय है और इसलिए π अपरिमेय है।
इस प्रकार, यह कहने में कोई अंतर्विरोध नहीं है कि π अपरिमेय है।
APPEARS IN
संबंधित प्रश्न
बताइए नीचे दी गई संख्या परिमेय हैं या अपरिमेय हैं:
`(2sqrt7)/(7sqrt7)`
बताइए नीचे दी गई संख्या परिमेय हैं या अपरिमेय हैं:
`1/sqrt2`
निम्नलिखित व्यंजक को सरल कीजिए:
`(3 + sqrt3)(3 - sqrt3)`
निम्नलिखित के हर का परिमेयकरण कीजिए:
`1/(sqrt5 + sqrt2)`
निम्नलिखित के बीच में तीन परिमेय संख्याएँ ज्ञात कीजिए :
0.1 और 0.11
निम्नलिखित के बीच में एक परिमेय संख्या और एक अपरिमेय संख्या प्रविष्ट कीजिए :
0.0001 और 0.001
निम्नलिखित को `p/q` के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है :
`5.bar2`
निम्नलिखित में a और b के मान ज्ञात कीजिए :
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
सरल कीजिए :
`(1^3 + 2^3 + 3^3)^(1/2)`
यदि `sqrt(2) = 1.414, sqrt(3) = 1.732` हो, तो `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))` का मान ज्ञात कीजिए।