Advertisements
Advertisements
प्रश्न
कुछ संख्याएँ ऐसी हैं कि जिन्हें `p/q, q ≠ 0` के रूप में नहीं लिखा जा सकता, जहाँ p और q दोनों पूर्णांक हैं।
पर्याय
सत्य
असत्य
उत्तर
यह कथन सत्य है।
स्पष्टीकरण -
सभी अपरिमेय संख्याएँ वे संख्याएँ होती हैं जिन्हें `p/q, q ≠ 0, p, q` दोनों पूर्णांक हैं और अपरिमित रूप से अनेक अपरिमेय हैं।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित को `bb(p/q)` के रूप में व्यक्त कीजिए, जहाँ p और q पूर्णांक हैं तथा q ≠ 0 है:
`0.4bar7`
`1/17` के दशमलव प्रसार में अंकों के पुनरावृत्ति खंड में अंकों की अधिकतम संख्या क्या हो सकती है? अपने उत्तर की जाँच करने के लिए विभाजन-क्रिया कीजिए।
`p/q` (q ≠ 0) के रूप की परिमेय संख्याओं के अनेक उदाहरण लीजिए, जहाँ p और q पूर्णाक हैं, जिनका 1 के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है और जिसका सांत दशमलव निरूपण (प्रसार) है। क्या आप यह अनुमान लगा सकते हैं कि q को कौन-सा गुण अवश्य संतुष्ट करना चाहिए?
यदि `sqrt(2) = 1.4142` है, तो `sqrt((sqrt(2) - 1)/(sqrt(2) + 1))` बराबर है :
`root(4)((81)^-2)` का मान है :
15 और 18 के बीच में परिमेय संख्याओं की संख्या परिमित है।
`sqrt(12)/sqrt(3)` एक परिमेय संख्या नहीं है, क्योंकि `sqrt(12)` और `sqrt(3)` पूर्णांक नहीं है।
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`3sqrt(18)`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
`- sqrt(0.4)`
औचित्य देते हुए, निम्नलिखित को परिमेय या अपरिमेय संख्या के रूप में वर्गीकृत कीजिए :
1.010010001...