मराठी

Limx→0f(x) और limx→1f(x) ज्ञात कीजिए, जहाँ f(x)={2x+3x≤03(x+1)x>0 - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`lim_(x → 0) f(x)` और `lim_(x → 1) f(x)` ज्ञात कीजिए, जहाँ

`f(x) = {(2x + 3, x ≤ 0),(3(x+1), x > 0):}`

बेरीज

उत्तर

`f(x) = {(2x + 3, x ≤ 0),(3(x+1), x > 0):}`

`lim_(x → 0^-) f(x) = lim_(x → 0)[2x + 3] = 2(0) + 3 = 3`

`lim_(x → 0^+) f(x) = lim_(x → 0) 3(x + 1) = 3(0 + 1) = 3`

∴ `lim_(x → 0^-) f(x) = lim_(x → 0^+) f(x) = lim_(x → 0) f(x) = 3`

`lim_(x → 1^-) f(x) = lim_(x → 1) 3(x + 1) = 3(1 + 1) = 6`

`lim_(x → 1^+) f(x) = lim_(x → 1) 3(x + 1) = 3(1 + 1) = 6`

∴ `lim_(x → 1) f(x) = lim_(x → 1^-) f(x) = lim_(x → 1^+) f(x) = 6`

shaalaa.com
सीमाएँ - बहुपदों और परिमेय फलनों की सीमाएँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: सीमा और अवकलज - प्रश्नावली 13.1 [पृष्ठ ३१९]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 13 सीमा और अवकलज
प्रश्नावली 13.1 | Q 23. | पृष्ठ ३१९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×