मराठी

मान ज्ञात कीजिए kk∑k=111 (2+3k) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

मान ज्ञात कीजिए `sum_("k" = 1)^11  (2 + 3^"k")`

बेरीज

उत्तर

`sum_("k" = 1)^11 (2 + 3^"k") = (2 + 3) + (2 + 3^2) + (2 + 3^3) + ...... 11` पदों तक

= `2 × 11 + (3 + 3^2 + 3^3 + ...... 11` पदों तक) 

= `22 + (3(3^11 - 1))/(3 - 1)` ......... `[∵ "a" = 3, "r" = 3, "S" = ("a"("r"^"n" - 1))/("r" - 1)]`

= `22 + 3/2 (3^11 - 1)`

shaalaa.com
गुणोत्तर श्रेणी
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अनुक्रम तथा श्रेणी - प्रश्नावली 9.3 [पृष्ठ २०६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 9 अनुक्रम तथा श्रेणी
प्रश्नावली 9.3 | Q 11. | पृष्ठ २०६

संबंधित प्रश्‍न

गुणोत्तर श्रेणी `5/2, 5/4, 5/8, ......` का 20वाँ तथा nवाँ पद ज्ञात कीजिए।


उस गुणोत्तर श्रेणी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।


किसी गुणोत्तर श्रेणी का 5वाँ, 8वाँ तथा 11वाँ पद क्रमशः p, q तथा s हैं तो दिखाइए कि q2 = ps.


किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद –3 है तो 7वाँ पद ज्ञात कीजिए।


अनुक्रम का कौन सा पद:

`2, 2sqrt2, 4, ......; 128` है?


अनुक्रम का कौन सा पद:

`sqrt3, 3, 3 sqrt3`, ….; 729 है?


अनुक्रम का कौन सा पद:

`1/3, 1/9, 1/27` ,....., `1/19683` है?


x के किस मान के लिए संख्याएँ `-2/7, "x", (-7)/2` गुणोत्तर श्रेणी में हैं?


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

0.15, 0.015, 0.0015, ….., 20 पदों तक


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

x3, x5, x7, ….. n पदों तक (यदि x ≠ ± 1)


गुणोत्तर श्रेणी 3, 32, 33, …. के कितने पद आवश्यक हैं ताकि उनका योगफल 120 हो जाए।


एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है तो S7 ज्ञात कीजिए?


यदि किसी गुणोत्तर श्रेणी का 4वाँ, 10वाँ तथा 16वाँ पद क्रमशः x, y तथा z हैं, तो सिद्ध कीजिए कि x, y, z गुणोत्तर श्रेणी में हैं।


अनुक्रम 8, 88, 888, 8888, …. के n पदों का योग ज्ञात कीजिए।


दिखाइए कि अनुक्रम a, ar, ar2, … arn – 1 तथा A, AR, AR2, …. ARn – 1 के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए। 


ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।


यदि किसी गुणोत्तर श्रेणी का pवाँ, qवाँ तथा rवाँ पद क्रमशः a, b, तथा c हो, तो सिद्ध कीजिए कि aq−r br−p cp−q = 1


ऐसी दो संख्याएँ ज्ञात कीजिए जिनको 3 तथा 81 के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।


गुणोत्तर श्रेणी के कुछ पदों का योग 315 है, उसका प्रथम पद तथा सार्व अनुपात क्रमशः 5 तथा 2 हैं। अंतिम पद तथा पदों की संख्या ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि P2Rn = Sn


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×