मराठी

ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।

बेरीज

उत्तर

मान लीजिए गुणोत्तर श्रेणी a, ar, ar2, ar3, … है

तीसरा पद = ar2, प्रथम पद = a

∴ ar2 – a = 9   ......(i)

दूसरा पद = ar, चौथा पद = ar3

ar – ar3 = 18   ......(ii)

समीकरण (i) को (ii) से भाग देने पर,

`("a"("r"^2 - 1))/("a"("r" - "r"^3))`

= `9/18`

= `1/2`

या 2(r2 − 1) = r − r3

∴ r3 + 2r2 − r − 2 = 0

या (r − 1) (r + 1) (r + 2) = 0

या r = 1, −1, −2 यदि r = −2,

समीकरण (i) से, a(4 − 1) = 9

∴ a = 3

∴ गुणोत्तर श्रेणी के चार पद 3, −6, 12, −24

shaalaa.com
गुणोत्तर श्रेणी
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अनुक्रम तथा श्रेणी - प्रश्नावली 9.3 [पृष्ठ २०७]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 9 अनुक्रम तथा श्रेणी
प्रश्नावली 9.3 | Q 21. | पृष्ठ २०७

संबंधित प्रश्‍न

गुणोत्तर श्रेणी `5/2, 5/4, 5/8, ......` का 20वाँ तथा nवाँ पद ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद –3 है तो 7वाँ पद ज्ञात कीजिए।


अनुक्रम का कौन सा पद:

`1/3, 1/9, 1/27` ,....., `1/19683` है?


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

0.15, 0.015, 0.0015, ….., 20 पदों तक


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

`sqrt7, sqrt21, 3sqrt7, .... n` पदों तक


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

x3, x5, x7, ….. n पदों तक (यदि x ≠ ± 1)


मान ज्ञात कीजिए `sum_("k" = 1)^11  (2 + 3^"k")`


एक गुणोत्तर श्रेणी के तीन पदों का योगफल `39/10` है तथा उनका गुणनफल 1 है। सार्व अनुपात तथा पदों को ज्ञात कीजिए।


एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है तो S7 ज्ञात कीजिए?


एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल –4 है तथा 5वाँ पद तृतीय पद का 4 गुना है।


यदि किसी गुणोत्तर श्रेणी का 4वाँ, 10वाँ तथा 16वाँ पद क्रमशः x, y तथा z हैं, तो सिद्ध कीजिए कि x, y, z गुणोत्तर श्रेणी में हैं।


अनुक्रम 8, 88, 888, 8888, …. के n पदों का योग ज्ञात कीजिए।


अनुक्रम 2, 4, 8, 16, 32, तथा 128, 32, 8, 2, `1/2` के संगत पदों के गुणनफल से बने अनुक्रम का योगफल ज्ञात कीजिए।


दिखाइए कि अनुक्रम a, ar, ar2, … arn – 1 तथा A, AR, AR2, …. ARn – 1 के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए। 


यदि किसी गुणोत्तर श्रेणी का प्रथम तथा nवाँ पद क्रमशः a तथा b हैं, एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि P2 = (ab)n


सभी x, y ϵ N के लिए f(x + y) = f(x). f(y) को संतुष्ट करता हुआ f एक ऐसा फलन है कि f(1) = 3 एवं `sum_("x" = 1)^ "n"` f(x) = 120 तो n का मान ज्ञात करो।


किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी के तीन पदों का योग 56 है। यदि हम क्रम से इन संख्याओं में से 1, 7, 21 घटाएँ तो हमें एक समांतर श्रेणी प्राप्त होती है। संख्याएँ ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि P2Rn = Sn


यदि x2 – 3x + p = 0 के मूल a तथा b हैं तथा x2 – 12x + q = 0, के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि (q + p) : (q – p) = 17 : 15


यदि a, b, c समांतर श्रेणी में हैं b, c, d गुणोत्तर श्रेणी में हैं तथा `1/"c", 1/"d", 1/"e"` समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि a, c, e गुणोत्तर श्रेणी में हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×