Advertisements
Advertisements
प्रश्न
किसी गुणोत्तर श्रेणी के तीन पदों का योग 56 है। यदि हम क्रम से इन संख्याओं में से 1, 7, 21 घटाएँ तो हमें एक समांतर श्रेणी प्राप्त होती है। संख्याएँ ज्ञात कीजिए।
उत्तर
मान लीजिए गुणोत्तर श्रेणी की तीन संख्याएँ a, ar, ar2 हैं।
तीनों पदों का योग = a + ar + ar2 = 56 …......(i)
इन संख्याओं में से 1, 7, 21 घटाने पर संख्याएँ
ar – 1, ar – 7, ar2 – 21 समांतर श्रेणी में हैं।
∴ 2(ar – 7) = (a – 1) + (ar2 – 21)
या 2ar – 14 = ar2 + a – 22
ar2 – 2ar + a = 22 – 14 = 8 ….........(ii)
समीकरण (i) को (ii) से भाग देने पर
= `("a"(1 + "r" + "r"^2))/("a"(1 - 2"r" + "r"^2)) = 58/8 = 7`
या 7(1 – 2r + r2) = 1 + r + r2
6r2 – 15r + 6 = 0
2r2 – 5r + 2 = 0
या (r – 2) (2r – 1) = 0 या r = 2, `1/2`
समीकरण (i) में r = 2 रखने पर,
a(1 + 2 + 4) = 56 या a = `56/7 = 8`
इस प्रकार तीन संख्याएँ हैं: 8, 16, 32
पुन: समीकरण (i) में r = `1/2` रखने से,
`"a" (1 + 1/2 + 1/4) = 56`
`"a" = (56 xx 4)/7 = 32`
∴ तीन संख्याएँ 32, 16, 8
अतः अभीष्ट संख्याएँ 8, 16, 32 हैं।
APPEARS IN
संबंधित प्रश्न
उस गुणोत्तर श्रेणी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।
किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद –3 है तो 7वाँ पद ज्ञात कीजिए।
अनुक्रम का कौन सा पद:
`sqrt3, 3, 3 sqrt3`, ….; 729 है?
अनुक्रम का कौन सा पद:
`1/3, 1/9, 1/27` ,....., `1/19683` है?
x के किस मान के लिए संख्याएँ `-2/7, "x", (-7)/2` गुणोत्तर श्रेणी में हैं?
निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
1, −a, a2, −a3, ...... n पदों तक (यदि a ≠ –1)
निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
x3, x5, x7, ….. n पदों तक (यदि x ≠ ± 1)
एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है तो S7 ज्ञात कीजिए?
एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल –4 है तथा 5वाँ पद तृतीय पद का 4 गुना है।
यदि किसी गुणोत्तर श्रेणी का 4वाँ, 10वाँ तथा 16वाँ पद क्रमशः x, y तथा z हैं, तो सिद्ध कीजिए कि x, y, z गुणोत्तर श्रेणी में हैं।
अनुक्रम 8, 88, 888, 8888, …. के n पदों का योग ज्ञात कीजिए।
अनुक्रम 2, 4, 8, 16, 32, तथा 128, 32, 8, 2, `1/2` के संगत पदों के गुणनफल से बने अनुक्रम का योगफल ज्ञात कीजिए।
ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।
यदि किसी गुणोत्तर श्रेणी का प्रथम तथा nवाँ पद क्रमशः a तथा b हैं, एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि P2 = (ab)n
यदि a, b, c तथा d गुणोत्तर श्रेणी में हैं तो दिखाइए कि (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2
ऐसी दो संख्याएँ ज्ञात कीजिए जिनको 3 तथा 81 के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।
सभी x, y ϵ N के लिए f(x + y) = f(x). f(y) को संतुष्ट करता हुआ f एक ऐसा फलन है कि f(1) = 3 एवं `sum_("x" = 1)^ "n"` f(x) = 120 तो n का मान ज्ञात करो।
किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।
यदि `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "dx")/("c" - "dx")` (x ≠ 0) हो, तो दिखाइए कि a, b, c, d गुणोत्तर श्रेणी में है।
यदि a, b, c, d गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि (an + bn), (bn + cn), (cn + dn) गुणोत्तर श्रेणी में हैं।
यदि a, b, c समांतर श्रेणी में हैं b, c, d गुणोत्तर श्रेणी में हैं तथा `1/"c", 1/"d", 1/"e"` समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि a, c, e गुणोत्तर श्रेणी में हैं।