मराठी

निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए। x3, x5, x7, ….. n पदों तक (यदि x ≠ ± 1) - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

x3, x5, x7, ….. n पदों तक (यदि x ≠ ± 1)

बेरीज

उत्तर

गुणोत्तर श्रेणी x3, x5, x7, …..

पहला पद, a = x3, सार्व-अनुपात, r = `"x"^5/"x"^3 = "x"^2`

∴ n पदों का योगफल = `("a"(1 - "r"^"n"))/(1 - "r")`

= `("x"^3 xx [1 - ("x"^2)^"n"])/(1 - "x"^2)`

=  `("x"^3 xx [1 - "x"^(2"n")])/(1 - "x"^2)`

shaalaa.com
गुणोत्तर श्रेणी
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: अनुक्रम तथा श्रेणी - प्रश्नावली 9.3 [पृष्ठ २०६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 9 अनुक्रम तथा श्रेणी
प्रश्नावली 9.3 | Q 10. | पृष्ठ २०६

संबंधित प्रश्‍न

गुणोत्तर श्रेणी `5/2, 5/4, 5/8, ......` का 20वाँ तथा nवाँ पद ज्ञात कीजिए।


उस गुणोत्तर श्रेणी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।


किसी गुणोत्तर श्रेणी का 5वाँ, 8वाँ तथा 11वाँ पद क्रमशः p, q तथा s हैं तो दिखाइए कि q2 = ps.


किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद –3 है तो 7वाँ पद ज्ञात कीजिए।


अनुक्रम का कौन सा पद:

`sqrt3, 3, 3 sqrt3`, ….; 729 है?


अनुक्रम का कौन सा पद:

`1/3, 1/9, 1/27` ,....., `1/19683` है?


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

`sqrt7, sqrt21, 3sqrt7, .... n` पदों तक


एक गुणोत्तर श्रेणी के तीन पदों का योगफल `39/10` है तथा उनका गुणनफल 1 है। सार्व अनुपात तथा पदों को ज्ञात कीजिए।


गुणोत्तर श्रेणी 3, 32, 33, …. के कितने पद आवश्यक हैं ताकि उनका योगफल 120 हो जाए।


एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है तो S7 ज्ञात कीजिए?


एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल –4 है तथा 5वाँ पद तृतीय पद का 4 गुना है।


यदि किसी गुणोत्तर श्रेणी का 4वाँ, 10वाँ तथा 16वाँ पद क्रमशः x, y तथा z हैं, तो सिद्ध कीजिए कि x, y, z गुणोत्तर श्रेणी में हैं।


अनुक्रम 2, 4, 8, 16, 32, तथा 128, 32, 8, 2, `1/2` के संगत पदों के गुणनफल से बने अनुक्रम का योगफल ज्ञात कीजिए।


दिखाइए कि अनुक्रम a, ar, ar2, … arn – 1 तथा A, AR, AR2, …. ARn – 1 के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए। 


ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।


यदि किसी गुणोत्तर श्रेणी का प्रथम तथा nवाँ पद क्रमशः a तथा b हैं, एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि P2 = (ab)n


किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी के तीन पदों का योग 56 है। यदि हम क्रम से इन संख्याओं में से 1, 7, 21 घटाएँ तो हमें एक समांतर श्रेणी प्राप्त होती है। संख्याएँ ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का 5 गुना है, तो सार्व अनुपात ज्ञात कीजिए।


यदि `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "dx")/("c" - "dx")` (x ≠ 0) हो, तो दिखाइए कि a, b, c, d गुणोत्तर श्रेणी में है।


किसी गुणोत्तर श्रेणी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि P2Rn = Sn


यदि a, b, c, d गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि (an + bn), (bn + cn), (cn + dn) गुणोत्तर श्रेणी में हैं।


यदि x2 – 3x + p = 0 के मूल a तथा b हैं तथा x2 – 12x + q = 0, के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि (q + p) : (q – p) = 17 : 15


यदि a, b, c समांतर श्रेणी में हैं b, c, d गुणोत्तर श्रेणी में हैं तथा `1/"c", 1/"d", 1/"e"` समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि a, c, e गुणोत्तर श्रेणी में हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×