Advertisements
Advertisements
प्रश्न
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए, a * b = a – b
उत्तर
साहचर्य नहीं हैं क्योंकि यदि हम a = 1, b = 2 तथा c = 3, लेते हैं तो
(a * b) * c = (1 * 2) * 3 = (1 – 2) * 3 = – 1 – 3 = – 4 तथा
a * (b * c) = 1 * (2 * 3) = 1 * (2 – 3) = 1 – ( – 1) = 2
अत: (a * b) * c ≠ a * (b * c) और इसलिए * साहचर्य नहीं हैं।
APPEARS IN
संबंधित प्रश्न
मान लीजिए कि f : R → R है तब निम्नलिखित प्रकार से परिभाषित चिन्ह फलन (Signum Function) है |
f(x) = `{(1"," x > 0), (0"," x = 0),(-1"," x < 0):}`
तथा g : R → R, g(x) = [x], द्वारा प्रदत्त महत्तम पूर्णांक फलन है, जहाँ [x], x से कम या x के बराबर पूर्णांक है, तो क्या fog तथा gof, अंतराल [0, 1] में संपाती (coincide) हैं?
मान लीजिए कि f : R → R, f (x) = 4x – 3 ∀ x ∈ R द्वारा परिभषित एक फलन है, तो f –1 लिखिए।
मान लीजिए कि f(x) = |x| + x तथा g(x) = x – x ∀ x ∈ R द्वारा परिभाषित f, g: R → R दो फलन हैं, तो f o g तथा g o f ज्ञात कीजिए।
मान लीजिए कि L किसी समतल में स्थित सभी सरल रेखाओं के समुच्चय को निरूपित करता है। मान लीजिए कि एक संबंध R, नियम lRm यदि और केवल यदि l लम्ब है m पर, ∀ l, m ∈ L, द्वारा परिभाषित है। तब R
मान लीजिए कि N प्राकृत संख्याओं के समुच्चय है तथा f : N → N, f (n) = 2n + 3 ∀ n ∈ N द्वारा परिभाषित एक फलन है, तो f
मान लीजिए कि f : R → R, f (x) = sin x तथा g : R → R g (x) = x2 द्वारा परिभषित हैं, तो f o g
अवयवों वाले समुच्चय A पर विचार कीजिए। A से स्वयं A पर एकैकी आच्छादक फलनों की कुल संख्या ______ है।
समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f एकैक है तो f तथा g दोनों ही एकैक फलन हैं।
मान लीजिए कि N प्राकृत संख्याओं का समुच्चय है, तो a * b = a + b, ∀ a, b ∈ N द्वारा N में परिभाषित द्वि-आधारी संक्रिया * के लिए तत्समक अवयव है।
मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।
g = {(1, 4), (2, 4), (3, 4)}
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य तथा संक्रामक हों किंतु सममित नहीं हों।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य, सममित तथा संक्रामक हों।
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
एकैकी है किंतु आच्छादक नहीं है।
मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:
h(x) = x|x|
न लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:
k(x) = x2
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x y किसी पूर्णाक का वर्ग है, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
मान लीजिए A = {1, 2, 3, ... 9} तथा A ×A में (a, b)] (c, d) के लिए (a, b) R (c, d) यदि और केवल यदि a + d = b + c द्वारा परिभाषित R एक संबंध हैं। सिद्ध कीजिए कि R एक तुल्यता संबंध है तथा तुल्यता-वर्ग [(2, 5)] भी प्राप्त (ज्ञात) कीजिए।
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a – b ∀ a, b ∈ Q
मान लीजिए कि एक द्वि-आधारीय संक्रिया * Q में परिभाषित है। ज्ञात कीजिए कि निम्नलिखित द्वि-आधारी संक्रिया में से कौन-कौन सी संक्रिया क्रम-विनिमेय हैं?
a * b = a2 + b2 ∀ a, b ∈ Q
मान लीजिए कि R में द्वारा द्वि-आधारी *, a * b = 1 + ab, ∀ a, b ∈ R तो संक्रिया *
मान लीजिए कि हम R में एक संबंध R इस प्रकार परिभाषित करें aRb यदि a ≥ b, तो R _________ है।
मान लीजिए कि A = {1, 2, 3} संबंध R = {1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1,3)}, पर विचार कीजिए, तो R _________ है।
मान लीजिए f: N → R f(x) = `(2x - 1)/2` द्वारा परिभाषित एक फलन है तथा g: Q → R g(x) = x + 2 द्वारा परिभाषित एक अन्य फलन है। तो (g o f) ` 3/2` ______ है।
मान लीजिए कि f: R → R, f(x) = `x/sqrt(1 + x^2)` द्वारा परिभाषित है, तो ( f o f o f ) (x) = ______।
समुच्चय A = {1, 2, 3} में R = {{1, 1), (1, 2), (2, 1), (3, 3)} प्रकार से परिभाषित संबंध R स्वतुल्य, सममित तथा संक्रामक है।
फलनों का संयोजन क्रम-विनिमेय होता है।
प्रत्येक फलन व्युत्क्रमणीय होता है।