Advertisements
Advertisements
प्रश्न
मान लीजिए कि T, यूक्लिडिय समतल में, सभी त्रिभुजों का समुच्चय है तथा मान लीजिए कि T में एक संबंध R इस प्रकार परिभाषित है कि aRb, यदि a सर्वांगसम है b के, ∀ a, b ∈ T, तो R ______
पर्याय
स्वतुल्य है किंतु संक्रामक नहीं हैं।
संक्रामक है किंतु सममित नहीं हैं।
तुल्यता संबंध है।
इनमें से कोई नहीं है।
उत्तर
मान लीजिए कि T, यूक्लिडिय समतल में, सभी त्रिभुजों का समुच्चय है तथा मान लीजिए कि T में एक संबंध R इस प्रकार परिभाषित है कि aRb, यदि a सर्वांगसम है b के, ∀ a, b ∈ T, तो R तुल्यता संबंध है।
व्याख्या:
दिया गया है aRb, यदि a, ∀ a, b ∈ T के सर्वांगसम है।
तब, हमारे पास aRa a, a के सर्वांगसम है; जो हमेशा सच होता है।
अतः, R स्वतुल्य है।
मान लीजिए aRb ⇒ a ~ b
b ~ a
bRa
अतः R सममित है।
मान लीजिए aRb and bRc
a ~ b and b ~ c
a ~ c
aRc
अत: R संक्रामक है।
इसलिए, R तुल्यता संबंध है।
APPEARS IN
संबंधित प्रश्न
मान लीजिए कि फलन f : R → R , f (x) = 4x – 1, ∀ x ∈ R द्वारा परिभषित है, तो सिद्ध कीजिए कि f एकैकी है।
यदि f = {(5, 2), (6, 3)} तथा g = {(2, 5), (3, 6)}, तो f तथा g के परिसर लिखिए।
सिद्ध कीजिए कि f(x) = `x/(x^2 + 1)`, ∀ ∈ + R, द्वारा परिभाषित फलन f : R → R न तो एकैकी है और न आच्छादी है।
मान लीजिए कि f(x) = |x| + x तथा g(x) = x – x ∀ x ∈ R द्वारा परिभाषित f, g: R → R दो फलन हैं, तो f o g तथा g o f ज्ञात कीजिए।
मान लीजिए कि N प्राकृत संख्याओं के समुच्चय है तथा f : N → N, f (n) = 2n + 3 ∀ n ∈ N द्वारा परिभाषित एक फलन है, तो f
समुच्चय A में 3 अवयव हैं तथा समुच्चय B में 4 अवयव हैं, तो A से B में परिभाषित एकैक प्रतिचित्रणों की संख्या
समुच्चय A = {1, 2, 3} पर विचार कीजिए तथा R, A में छोटे से छोटा तुल्यता संबंध है, तो R = ______
मान लीजिए कि R वास्तविक संख्याओं का समुच्चय है तथा R में एक द्वि-आधारी संक्रिया * इस प्रकार परिभाषित है कि a * b = a + b – ab ∀ a, b ∈ R. तो द्वि-आधारी संक्रिया * के लिए तत्समक अवयव ______ है।
समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f एकैक है तो f तथा g दोनों ही एकैक फलन हैं।
मान लीजिए कि N प्राकृत संख्याओं का समुच्चय है, तो a * b = a + b, ∀ a, b ∈ N द्वारा N में परिभाषित द्वि-आधारी संक्रिया * के लिए तत्समक अवयव है।
मान लीजिए कि f , g : R → R क्रमश: f (x) = 2x + 1 तथा g (x) = x2 – 2, ∀ x ∈ R द्वारा परिभाषित हैं, तो g o f ज्ञात कीजिए।
क्या g = {(1, 1), (2, 3), (3, 5), (4, 7)} एक फलन है? यदि g, g (x) = αx + β द्वारा वर्णित है, तो α तथा β का मान क्या निर्धारित होना चाहिए?
यदि फलन f: A → B तथा g: B → A, g o f = IA को संतुष्ट करता हैं, तो सिद्ध कीजिए कि f एकैक है तथा g आच्छादक है।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
स्वतुल्य, सममित तथा संक्रामक हों।
दिया हुआ है कि A = {2, 3, 4}, B = {2, 5, 6, 7}। निम्नलिखित में से उदाहरण की रचना कीजिए :
A से B में एक एकैक प्रतिचित्रण।
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
एकैकी है किंतु आच्छादक नहीं है।
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
एकैकी नहीं है किंतु आच्छादक है।
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o g ज्ञात कीजिए:
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o g ज्ञात कीजिए:
मान लीजिए कि R में द्वारा द्वि-आधारी *, a * b = 1 + ab, ∀ a, b ∈ R तो संक्रिया *
यदि समुच्चय {1, 2, 3} में R = {(1, 2)} द्वारा परिभाषित एक संबंध R है, तो R ______ है।
माना लीजिए कि A = {1, 2, 3, ...n} तथा B = {a, b}। तो A से B में आच्छादी प्रतिचित्रों (प्रतिचित्रणों) की संख्या _________ है।
मान लीजिए कि f: R - `{3/5}` → R, f(x) = `(3x + 2)/(5x - 3)` द्वारा परिभाषित है, तो ______
मान लीजिए f: [0, 1] → [0, 1] f(x) =`[(x, "यदि" x "परिमेय है")/(1-x "यदि" x "अपरिमेय है")]`
द्वारा परिभाषित है, तो (f o f) x ______ है।
मान लीजिए f: N → R f(x) = `(2x - 1)/2` द्वारा परिभाषित एक फलन है तथा g: Q → R g(x) = x + 2 द्वारा परिभाषित एक अन्य फलन है। तो (g o f) ` 3/2` ______ है।
मान लीजिए कि f: R → R f(x) = tan x द्वारा दत्त है, तो f-1(1) _______ है।
मान लीजिए कि N में एक संबंध R, aRb यदि 2a + 3b = 30 द्वारा परिभाषित है, तो R = ______।
फलनों का संयोजन क्रम-विनिमेय होता है।