Advertisements
Advertisements
प्रश्न
Match the items of Column I and Column II.
Column I | Column II |
(i) K | (a) I × t |
(ii) Λm | (b) `Λ_m/Λ_m^0` |
(iii) α | (c) `K/c` |
(iv) Q | (d) `G^∗/R` |
उत्तर
Column I | Column II |
(i) K | (d) `G^∗/R` |
(ii) Λm | (c) `K/c` |
(iii) α | (b) `Λ_m/Λ_m^0` |
(iv) Q | (a) I × t |
APPEARS IN
संबंधित प्रश्न
How many moles of electrons are required for reduction of 2 moles of Zn2+ to Zn?
Consider the change in the oxidation state of Bromine corresponding to different emf values as shown in the diagram below:
\[\ce{BrO^-_4 ->[1.82 V] BrO^-_3 ->[1.5 V] HBrO ->[1.595 V] Br2 ->[1.0652 V] Br^-}\]
Then the species undergoing disproportionation is
Cell equation: \[\ce{A + 2B^- -> A^{2+} + 2B}\]
\[\ce{A^{2+} + 2e^- -> A}\] E0 = +0.34 V and log10 k = 15.6 at 300 K for cell reactions find E0 for \[\ce{B^+ + e^- -> B}\]
For the cell \[\ce{Mg_{(s)}|Mg^{2+}_{( aq)}||Ag^+_{( aq)}|Ag_{(s)}}\], calculate the equilibrium constant at 25°C and maximum work that can be obtained during operation of cell.
Given: \[\ce{E^0_{{Mg^{2+}|Mg}}}\] = −2.37 V and \[\ce{E^0_{{Ag^{+}|Ag}}}\] = 0.80 V
Electrode potential for Mg electrode varies according to the equation
`E_(Mg^(2+) | Mg) = E_(Mg^(2+) | Mg)^Θ - 0.059/2 log 1/([Mg^(2+)])`. The graph of `E_(Mg^(2+) | Mg)` vs `log [Mg^(2+)]` is ______.
A galvanic cell has electrical potential of 1.1V. If an opposing potential of 1.1V is applied to this cell, what will happen to the cell reaction and current flowing through the cell?
Match the terms given in Column I with the items given in Column II.
Column I | Column II |
(i) Λm | (a) intensive property |
(ii) ECell | (b) depends on number of ions/volume |
(iii) K | (c) extensive property |
(iv) ∆rGCell | (d) increases with dilution |
The electrochemical cell stops working after some time because
Standard reduction electrode potentials of three metals A, B and C are respectively + 0.5 V, – 3.0 V. and – 1.2 V. The reducing powers of there metal is.
Calculate the λ0m for Cl- ion from the data given below:
∧0m MgCl2 = 258.6 Scm2 mol-1 and λ0m Mg2+ = 106 Scm2 mol-1