मराठी

निम्नलिखित आकृति में, ABCD, DCFE और ABFE समांतर चतुर्भुज हैं। दर्शाइए कि ar (ADE) = ar (BCF) है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

आकृति में, ABCD, DCFE और ABFE समांतर चतुर्भुज हैं। दर्शाइए कि ar (ADE) = ar (BCF) है।

बेरीज

उत्तर

दिया गया है कि ABCD एक समांतर चतुर्भुज है। हम जानते हैं कि समांतर चतुर्भुज की सम्मुख भुजाएँ बराबर होती हैं।

∴ AD = BC ... (1)

इसी प्रकार, समांतर चतुर्भुज DCEF और ABFE के लिए, यह सिद्ध किया जा सकता है कि

DE = CF ... (2)

और, EA = FB ... (3)

In ΔADE और ΔBCF,

AD = BC             ................[समीकरण (1) का उपयोग करना]

DE = CF             ................[समीकरण (2) का उपयोग करना]

EA = FB             ................[समीकरण (2) का उपयोग करना]

∴ ΔADE ≅ BCF (SSS सर्वांगसमता नियम)

⇒ क्षेत्रफल (ΔADE) = क्षेत्रफल (ΔBCF)

shaalaa.com
एक ही आधार और एक ही समांतर रेखाओं के बीच समांतर चतुर्भुज
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल - प्रश्नावली 9.4 (ऐच्छिक) [पृष्ठ १९८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 9
पाठ 9 समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल
प्रश्नावली 9.4 (ऐच्छिक) | Q 3. | पृष्ठ १९८

संबंधित प्रश्‍न

दी गई आकृति में, ΔABC की माध्यिका AD पर स्थित E कोई बिंदु है। दिखाएँ कि ar (ABE) = ar (ACE) है।


दर्शाइए कि समांतर चतुर्भुज के दोनों विकर्ण उसे बराबर क्षेत्रफलों वाले चार त्रिभुजों में बाँटते हैं।


गाँव के एक निवासी इतवारी के पास एक चतुर्भुजाकार भूखंड था। उस गाँव की ग्राम पंचायत ने उसके भूखंड के एक कोने से उसका कुछ भाग लेने का निर्णय लिया ताकि वहाँ एक स्वास्थ्य केन्द्र का निर्माण कराया जा सके। इतवारी इस प्रस्ताव को इस प्रतिबन्ध् के साथ स्वीकार कर लेता है कि उसे इस भाग के बदले उसी भूखंड के संलग्न एक भाग ऐसा दे दिया जाए कि उसका भूखंड त्रिभुजाकार हो जाए। स्पष्ट कीजिए कि इस प्रस्ताव को किस प्रकार कार्यान्वित किया जा सकता है।


दी गई आकृति में, ar(DRC) = ar(DPC) है और ar(BDP) = ar(ARC) है | दर्शाइए कि दोनों चतुर्भुज ABCD और DCPR समलंब है |


समांतर चतुर्भुज ABCD और आयत ABEF एक ही आधार पर स्थित हैं और उनके क्षेत्रफल बराबर हैं। दर्शाइए की समांतर चतुर्भुज का परिमाप आयत के परिमाप से अधिक है।


चतुर्भुज ABCD के विकर्ण AC और BD एक दूसरे को P पर काटते हैं। दर्शाइए कि ar (APB) × ar (CPD) = ar (APD) × ar (BPC) है।

[संकेत : A और C से BD पर लंब खींचिए।]


आकृति में, ABC एक समकोण त्रिभुज है जिसका कोण A समकोण है। BCED, ACFG और ABMN क्रमशः BC, CA और AB भुजाओं पर वर्ग हैं। रेखा खंड AX ⊥ DE, भुजा BC से Y पर मिलता है। दर्शाइए कि:

(i) ΔMBC ≅ ΔABD

(ii) ar (BYXD) = 2 ar(MBC)

(iii) ar (BYXD) = ar(ABMN)

(iv) ΔFCB ≅ ΔACE

(v) ar(CYXE) = 2 ar(FCB)

(vi) ar (CYXE) = ar(ACFG)

(vii) ar (BCED) = ar(ABMN) + ar(ACFG)

नोट: परिणाम (vii) पाइथागोरस का प्रसिद्ध प्रमेय है। आप कक्षा X में इस प्रमेय के सरल प्रमाण के बारे में जानेंगे।


PQRS एक समांतर चतुर्भुज है जिसका क्षेत्रफल 180 cm2 है तथा A विकर्ण QS पर स्थित कोई बिंदु है। तब ∆ASR का क्षेत्रफल 90 cm2 है। 


निम्नलिखित आकृति में, CD || AE और CY || BA है। सिद्ध कीजिए कि ar (CBX) = ar (AXY) है।


निम्नलिखित आकृति में, ABCDE एक पंचभुज है। AC के समांतर खींची गई BP बढ़ाई गई DC को P पर तथा AD के समांतर खींची गई EQ बढ़ाई गई CD से Q पर मिलती है। सिद्ध कीजिए कि ar (ABCDE) = ar (APQ) है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×