Advertisements
Advertisements
प्रश्न
निम्नलिखित अंकगणितीय श्रृंखला का 19वाँ पद ज्ञात कीजिए।
7, 13, 19, 25, ...
उत्तर
दी गई अंकगणितीय श्रृंखला 7, 13, 19, 25, .... है।
यहाँ, पहला पद = a = t1 = 7, t2 = 13, t3 = 19, t4 = 25, ...
सामान्य अंतर = d = t2 − t1
= 13 − 7
= 6
19वाँ पद ज्ञात करने के लिए हमें सूत्र का उपयोग करना होगा,
tn = a + (n − 1)d
∴ t19 = 7 + (19 − 1) × 6 ...(मान प्रतिस्थापित करने पर)
∴ t19 = 7 + 18 × 6
∴ t19 = 7 + 108
∴ t19 = 115
∴ श्रृंखला का 19वाँ पद 115 है।
संबंधित प्रश्न
दी गई अंकगणितीय श्रृंखला के आधारपर रिक्त चौखटों मेंं उचित संख्या लिखिए।
1, 8, 15, 22, ...
यहाँ a = `square`, t1 = `square`, t2 = `square`, t3 = `square`, ...
t2 − t1 = `square - square = square`
t3 − t2 = `square - square = square`
∴ d = `square`
दी गई अंकगणितीय श्रृंखला के आधारपर रिक्त चौखटों मेंं उचित संख्या लिखिए।
3, 6, 9, 12, ...
यहाँ t1 = `square`, t2 = `square`, t3 = `square`, t4 = `square`, ...
t2 − t1 = `square`,
t3 − t2 = `square`
∴ d = `square`
निम्नलिखित अनुक्रमणिका अंकगणितीय श्रृंखला है या नहीं निश्चित कीजिए। यदि हो तो उस श्रृंखला का 20 वाँ पद ज्ञात कीजिए।
−12, −5, 2, 9, 16, 23, 30, ...
अंकगणितीय श्रृंखला 12, 16, 20, 24, ... दी गई है। इस श्रृंखला का 24 वाँ पद ज्ञात कीजिए।
11, 8, 5, 2, ... इस अंकगणितीय श्रृंखला मेंं संख्या −151 कौन-से क्रमांक का पद होगा?
किसी अंकगणितीय श्रृंखला का 17 वाँ पद उसके 10 वें पद से अधिक हो तो सामान्य अंतर ज्ञात कीजिए।
एक अंकगणितीय श्रृंखला का 10 वाँ पद 46 है 5 वें तथा 7 वें पदों का योगफल 52 हो तो वह श्रृंखला ज्ञात कीजिए।
किसी अंकगणितीय श्रृंखला का 4 था पद −15 और 9 वाँ पद −30 है तो पहले 10 पदों का योगफल ज्ञात कीजिए।
यदि किसी अंकगणितीय श्रृंखला के तीसरे तथा 8 वें पदों का योगफल 7 हो और 7 वें तथा 14 वें पदों का योगफल −3 हो तो 10 वाँ पद ज्ञात कीजिए।
एक अंकगणितीय श्रृंखला का पहला पद −5 और अंतिम पद 45 है। यदि उन सभी पदों का योगफल 120 हो तो वे कितने पद होंगे? और उनका सामान्य अंतर कितना होगा?