Advertisements
Advertisements
प्रश्न
निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए :
निम्नलिखित आकृति में, यदि OX = `1/2` XY, PX = `1/2` XZ और OX = PX हो, तो दर्शाइए कि XY = XZ है।
उत्तर
दिया गया है, OX = `1/2` XY
⇒ 2OX = XY ...(i)
PX = `1/2` XZ
⇒ 2PX = XZ ...(ii)
और OX = PX ...(iii)
यूक्लिड की अभिगृहीत के अनुसार, जो चीजें एक ही चीज की दोगुनी होती हैं वे एक दूसरे के बराबर होती हैं।
समीकरण (iii) को 2 से गुणा करने पर, हम प्राप्त करते हैं।
2OX = 2PX
XY = XZ ...[समीकरण (i) और (ii) से]
APPEARS IN
संबंधित प्रश्न
निम्नलिखित कथन सत्य हैं या असत्य हैं? अपने उत्तर के लिए कारण दीजिए।
दो भिन्न बिंदुओं से होकर जाने वाली असंख्य रेखाएँ हैं।
निम्नलिखित पद की परिभाषा दीजिए। क्या इनके लिए कुछ ऐसे पद हैं, जिन्हें परिभाषित करने की आवश्यकता है? वे क्या हैं और आप इन्हें कैसे परिभाषित कर पाएँगे?
वर्ग
नीचे दी हुई दो अभिधरणाओं पर विचार कीजिए:
- दो भिन्न बिंदु A और B दिए रहने पर, एक तीसरा बिंदु C ऐसा विद्यमान है जो A और B के बीच स्थित होता है।
- यहाँ कम से कम ऐसे तीन बिंदु विद्यमान हैं कि वे एक रेखा पर स्थित नहीं हैं।
यदि दो बिंदुओं A और B के बीच एक बिंदु C ऐसा स्थित है कि AC = BC है, तो सिद्ध कीजिए कि AC = `1/2` AB है। एक आकृति खींच कर इसे स्पष्ट कीजिए।
आकृति में, यदि AC = BD है, तो सिद्ध कीजिए कि AB = CD है।
पाइथागोरस एक विद्यार्थी था :
यदि एक राशि B एक अन्य राशि A का एक भाग है, तो A को B और एक अन्य राशि C के योग के रूप में लिखा जा सकता है।
यूक्लिड की पाँचवीं अभिधारणा को अन्य अभिधारणाओं और अभिगृहीतों का प्रयोग करते हुए, सिद्ध करने के प्रयासों के फलस्वरूप अन्य अनेक ज्यामितियों की खोज हुई।
निम्नलिखित कथन का अध्ययन कीजिए :
“दो प्रतिच्छेदी रेखाएँ एक ही रेखा पर लंब नहीं हो सकती हैं।”
जाँच कीजिए कि क्या यह कथन यूक्लिड पाँचवीं अभिधारणा का समतुल्य रूपांतरण है।
[संकेत : उपरोक्त कथन में, दो प्रतिच्छेदी रेखा l और m तथा एक अन्य रेखा n की पहचान कीजिए।]
निम्नलिखित कथनों को अभिगृहीत माना गया है :
- यदि दो रेखाएँ परस्पर प्रतिच्छेद करें तो शीर्षाभिमुख कोण बराबर नहीं होते हैं।
- यदि एक किरण एक रेखा पर खड़ी हो तो इस प्रकार प्राप्त दोनों आसन्न कोणों का योग 180° होता है।
क्या अभिगृहीतों का यह निकाय संगत है?