मराठी

यूक्लिड की पाँचवीं अभिधारणा को अन्य अभिधारणाओं और अभिगृहीतों का प्रयोग करते हुए, सिद्ध करने के प्रयासों के फलस्वरूप अन्य अनेक ज्यामितियों की खोज हुई। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यूक्लिड की पाँचवीं अभिधारणा को अन्य अभिधारणाओं और अभिगृहीतों का प्रयोग करते हुए, सिद्ध करने के प्रयासों के फलस्वरूप अन्य अनेक ज्यामितियों की खोज हुई।

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह कथन सत्य है।

स्पष्टीकरण -

पांचवीं अभिधारणा को प्रमेय के रूप में सिद्ध करने के सभी प्रयासों ने कई अन्य ज्यामितियों के निर्माण में एक बड़ी उपलब्धि हासिल की। ये ज्यामिति यूक्लिडियन ज्यामिति से काफी भिन्न हैं और इन्हें गैर-यूक्लिडियन ज्यामिति कहा जाता है।

shaalaa.com
यूक्लिड की परिभाषाएँ, अभिगृहीत और अभिधारणाएँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: यूक्लिड की ज्यामिति का परिचय - प्रश्नावली 5.2 [पृष्ठ ४९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 9
पाठ 5 यूक्लिड की ज्यामिति का परिचय
प्रश्नावली 5.2 | Q 9. | पृष्ठ ४९

संबंधित प्रश्‍न

निम्नलिखित कथन सत्य हैं या असत्य हैं? अपने उत्तर के लिए कारण दीजिए।

दो भिन्न बिंदुओं से होकर जाने वाली असंख्य रेखाएँ हैं।


निम्नलिखित पद की परिभाषा दीजिए। क्या इनके लिए कुछ ऐसे पद हैं, जिन्हें परिभाषित करने की आवश्यकता है? वे क्या हैं और आप इन्हें कैसे परिभाषित कर पाएँगे?

वृत्त की त्रिज्या


निम्नलिखित पद की परिभाषा दीजिए। क्या इनके लिए कुछ ऐसे पद हैं, जिन्हें परिभाषित करने की आवश्यकता है? वे क्या हैं और आप इन्हें कैसे परिभाषित कर पाएँगे?

वर्ग


यदि दो बिंदुओं A और B के बीच एक बिंदु C ऐसा स्थित है कि AC = BC है, तो सिद्ध कीजिए कि AC = `1/2` AB है। एक आकृति खींच कर इसे स्पष्ट कीजिए।


यूक्लिड की अभिगृहीतों की सूची में दिया हुआ अभिगृहीत 5 एक सर्वव्यापी सत्य क्यों माना
जाता है? (ध्यान दीजिए कि यह प्रश्न पाँचवीं अभिधरणा से संबंधित नहीं है।)


यूक्लिड निम्नलिखित देश का वासी था :


यूक्लिड के कथन, सभी समकोण एक दूसरे के बराबर होते हैं, निम्नलिखित के रूप में दिया गया है :


यदि एक राशि B एक अन्य राशि A का एक भाग है, तो A को B और एक अन्य राशि C के योग के रूप में लिखा जा सकता है। 


निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए :

निम्नलिखित आकृति में, ∠ABC = ∠ACB और ∠3 = ∠4 है। दर्शाइए कि ∠1 = ∠2 है।


निम्नलिखित कथनों को अभिगृहीत माना गया है :

  1. यदि एक तिर्यक रेखा दो समांतर रेखाओं को प्रतिच्छेद करती है तो संगत कोण आवश्यक रूप से बराबर नहीं होते हैं। 
  2. यदि एक तिर्यक रेखा दो समांतर रेखाओं को प्रतिच्छेद करती है तो एकांतर अंतःकोण बराबर होते हैं।

क्या अभिगृहीतों का यह निकाय संगत (अविरोधी) है? अपने उत्तर का औचित्य दीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×