Advertisements
Advertisements
Question
यूक्लिड की पाँचवीं अभिधारणा को अन्य अभिधारणाओं और अभिगृहीतों का प्रयोग करते हुए, सिद्ध करने के प्रयासों के फलस्वरूप अन्य अनेक ज्यामितियों की खोज हुई।
Options
सत्य
असत्य
Solution
यह कथन सत्य है।
स्पष्टीकरण -
पांचवीं अभिधारणा को प्रमेय के रूप में सिद्ध करने के सभी प्रयासों ने कई अन्य ज्यामितियों के निर्माण में एक बड़ी उपलब्धि हासिल की। ये ज्यामिति यूक्लिडियन ज्यामिति से काफी भिन्न हैं और इन्हें गैर-यूक्लिडियन ज्यामिति कहा जाता है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित पद की परिभाषा दीजिए। क्या इनके लिए कुछ ऐसे पद हैं, जिन्हें परिभाषित करने की आवश्यकता है? वे क्या हैं और आप इन्हें कैसे परिभाषित कर पाएँगे?
समांतर रेखाएँ
नीचे दी हुई दो अभिधरणाओं पर विचार कीजिए:
- दो भिन्न बिंदु A और B दिए रहने पर, एक तीसरा बिंदु C ऐसा विद्यमान है जो A और B के बीच स्थित होता है।
- यहाँ कम से कम ऐसे तीन बिंदु विद्यमान हैं कि वे एक रेखा पर स्थित नहीं हैं।
यूक्लिड की अभिगृहीतों की सूची में दिया हुआ अभिगृहीत 5 एक सर्वव्यापी सत्य क्यों माना
जाता है? (ध्यान दीजिए कि यह प्रश्न पाँचवीं अभिधरणा से संबंधित नहीं है।)
यूक्लिडीय ज्यामिति केवल वक्र पृष्ठों के लिए ही मान्य है।
ठोसों की परिसीमाएँ वक्र होती हैं।
एक पृष्ठ के किनारे वक्र होते हैं।
निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए :
निम्नलिखित आकृति में, हमें प्राप्त है :
AB = BC, BX = BY। दर्शाइए कि AX = CY है।
निम्नलिखित प्रश्न को उपयुक्त यूक्लिड की अभिगृहीत का प्रयोग करते हुए, हल कीजिए :
निम्नलिखित आकृति में, X और Y क्रमश : AC और BC के मध्य-बिंदु हैं तथा AX = CY है। दर्शाइए कि AC = BC है।
निम्नलिखित आकृति में BM = BN हैं, M रेखाखंड AB का मध्य-बिंदु है तथा N रेखाखंड BC का मध्य-बिंदु है। दर्शाइए कि AB = BC है।
निम्नलिखित कथन को पढ़िए :
एक समबाहु त्रिभुज तीन रेखाखंडों से बना एक बहुभुज है जिनमें से दो रेखाखंड तीसरे रेखाखंड के बराबर हैं तथा इसका प्रत्येक कोण 60° का है।
इस परिभाषा में, उन पदों को परिभाषित कीजिए जिन्हें आप आवश्यक समझते हैं। क्या इसमें कोई अपरिभाषित पद है? क्या आप इसका औचित्य दे सकते हैं कि एक समबाहु त्रिभुज के सभी कोण और सभी भुजाएँ बराबर होती हैं।