Advertisements
Advertisements
प्रश्न
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 37 – (3x + 5) ≥ 9x – 8(x – 3)
उत्तर
दी हुई असमिका
37 – (3x + 5) ≥ 9x – 8(x – 3)
37 – 3x - 5 ≥ 9x – 8x + 24
– 3x + 32 ≥ x + 24
32 - 24 ≥ x + 3x
8 ≥ 4x
= 2 ≥ x
इस प्रकार, सभी वास्तविक संख्याएँ x, जो 2 से कम या बराबर हैं, दी गई असमिका का हल हैं।
इसलिए, दी गई असमिका का हल समुच्चय (–∞, 2] है।
APPEARS IN
संबंधित प्रश्न
हल कीजिए 24x < 100, जब x एक पूर्णांक है।
हल कीजिए: -12x > 30, जब x एक प्राकृत संख्या है।
हल कीजिए: 5x – 3 < 7, जब x एक पूर्णांक है।
हल कीजिए: 5x – 3 <7, जब x एक वास्तविक संख्या है।
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 4x + 3 < 6x + 7
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3x – 7 > 5x – 1
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 3(2 – x) ≥ 2 (1 – x)
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `x/3 > x/2 + 1`
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `1/2 ((3x)/5 + 4) >= 1/3 (x -6)`
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: 2(2x + 3) – 10 < 6 (x – 2)
निम्नलिखित प्रश्न वास्तविक संख्या x के लिए हल कीजिए: `x/4 < (5x - 2)/3 - (7x - 3)/5`
दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।
`x/2 >= (5x -2)/3 - (7x - 3)/5`
क्रमागत सम संख्याओं के ऐसे युग्म ज्ञात कीजिए जिनमें से प्रत्येक 5 से बड़े हों, तथा उनका योगफल 23 से कम हो।
एक त्रिभुज की सबसे बड़ी भुजा सबसे छोटी भुजा की तीन गुनी है तथा त्रिभुज की तीसरी भुजा सबसे बड़ी भुजा से 2 सेमी कम है। तीसरी भुजा की न्यूनतम लंबाई ज्ञात कीजिए जबकि त्रिभुज का परिमाप न्यूनतम 61 सेमी है।
असमानता को हल कीजिए:
6 ≤ – 3 (2x – 4) < 12
असमानता को हल कीजिए:
- 3 ≤ 4 - `(7x)/2 ≤ 18`
असमिका को हल कीजिए:
`-12 < 4 - (3x)/(-5) <= 2`
असमिका को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।
2(x – 1) < x + 5, 3(x + 2) > 2 – x
असमिकाओं को हल कीजिए और हल को संख्या रेखा पर निरूपित कीजिए।
5(2x – 7) – 3(2x + 3) ≤ 0, 2x + 19 ≤ 6x + 47
ऐसी रैखिक असमिकाएँ ज्ञात कीजिए जिनका हल समुच्चय नीचे प्रदर्शित आकृति का छायांकित भाग है।
प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।
प्रश्न में x चर वाले किसी रैखिक असमिका के हल को संख्या रेखा पर निरूपित किया गया है।