Advertisements
Advertisements
प्रश्न
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec theta`
[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]
उत्तर
L.H.S
= `(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) `
= `(sintheta/costheta)/(1-costheta/sintheta) + (costheta/sintheta)/(1-sintheta/costheta)`
= `(sintheta/costheta)/((sintheta-costheta)/(sintheta))+ (costheta/sintheta)/((costheta-sintheta)/costheta)`
= `(sin^2theta)/(costheta(sintheta-costheta)) - (cos^2theta)/(sintheta(sintheta-costheta))`
= `1/(sintheta - costheta)[(sin^2theta)/costheta - cos^2theta/sintheta]`
= `(1/(sintheta-costheta))[(sin^3theta-cos^3theta)/(sinthetacostheta)]`
= `(1/(sintheta-costheta))[((sintheta-costheta)(sin^2theta+cos^2theta+sinthetacostheta))/(sinthetacostheta)]`
= `((1+sinthetacostheta))/((sinthetacostheta))`
= sec θ cosec θ + 1
= R.H.S
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
9 sec2 A − 9 tan2 A बराबर है:
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
(secA + tanA) (1 − sinA) बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
sin(45° + θ) – cos(45° – θ) बराबर ______ है।
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।
यदि sin θ + cos θ = p और sec θ + cosec θ = q है, तो सिद्ध कीजिए कि q(p2 – 1) = 2p है।