Advertisements
Advertisements
प्रश्न
दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।
उत्तर
L.H.S = tan4θ + tan2θ
= tan2θ(tan2θ + 1)
= tan2θ.sec2θ ...[∵ sec2θ = tan2θ + 1]
= (sec2θ – 1).sec2θ ...[∵ tan2θ = sec2θ – 1]
= sec4θ – sec2θ
= R.H.S
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि sin θ = `a/b` दिया है, तो cos θ से बराबर ______ है।
यदि sinθ – cosθ = 0 है, तो (sin4θ + cos4θ) का मान ______ है।
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
यदि 2sin2θ – cos2θ = 2 है, तो θ का मान ज्ञात कीजिए।
यदि tan θ + sec θ = l है, तो सिद्ध कीजिए कि sec θ = `(l^2 + 1)/(2l)` है।