मराठी

2sinθ का मान a+1a हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

2sinθ का मान `a + 1/a` हो सकता है, जहाँ a एक धनात्मक संख्या है और a ≠ 1 है।

पर्याय

  • सत्य

  • असत्य

MCQ
चूक किंवा बरोबर

उत्तर

यह कथन असत्य है।

स्पष्टीकरण:

माना a = 2, फिर `a + 1/a = 2 + 1/2 = 5/2`

यदि 2sinθ = `a + 1/a,` फिर a

2sinθ = `5/2`

⇒ sinθ =  `5/4` = 1.25 

जो संभव नहीं है   ...[∵ sin θ ≤ 1]

shaalaa.com
त्रिकोणमितीय सर्वसमिकाएँ
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: त्रिकोणमिति का परिचय और उसके अनुप्रयोग - प्रश्नावली 8.2 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 8 त्रिकोणमिति का परिचय और उसके अनुप्रयोग
प्रश्नावली 8.2 | Q 9. | पृष्ठ ९५

संबंधित प्रश्‍न

मान निकालिए

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`


निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:

(cosec A – sin A) (sec A – cos A) = `1/(tanA+cotA)`

[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


निम्नलिखित को सिद्ध कीजिए:

(sin α + cos α) (tan α + cot α) = sec α + cosec α


दर्शाइए की tan4θ + tan2θ = sec4θ – sec2θ है।


यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×