Advertisements
Advertisements
प्रश्न
निम्नलिखित सर्वसमिकाएँ सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
उत्तर
L.H.S
= `(cosec θ – cot θ)^2`
= `(1/sintheta - costheta/sintheta)^2`
= `(1-costheta)^2/(sin^2 theta)`
= `(1-cos theta)^2/(1-cos^2theta)`
= `((1-costheta)(1-costheta))/((1-costheta)(1+cos theta)) `
= `(1-cos theta)/(1+costheta)`
= R.H.S
APPEARS IN
संबंधित प्रश्न
मान निकालिए
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
मान निकालिए sin25° cos65° + cos25° sin65°
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
व्यंजक [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] का मान ______ है।
यदि cosA + cos2A = 1 है, तो sin2A + sin4A = 1 है।
निम्नलिखित को सिद्ध कीजिए:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
निम्नलिखित को सिद्ध कीजिए:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
दर्शाइए कि `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1 है।
यदि 1 + sin2θ = 3sinθ cosθ है, तो सिद्ध कीजिए कि tanθ = 1 या `1/2` है।
यदि sinθ + 2cosθ = 1 दिया है, तो सिद्ध कीजिए कि 2sinθ – cosθ = 2 है।